【跌倒检测】基于计算机视觉实现居家老人跌倒检测及预警系统附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

人口老龄化是全球面临的重大社会挑战,中国尤为突出。随着老年人口比例的不断攀升,如何保障老年人的健康和安全,提升其生活质量,成为社会关注的焦点。跌倒作为老年人意外伤害的主要原因之一,不仅直接威胁老年人的生命安全,还会引发各种并发症,增加家庭和社会的医疗负担。因此,构建有效的跌倒检测与预警系统,对于降低老年人跌倒风险,提升居家养老的安全性,具有重要的现实意义。

传统跌倒检测方法主要依赖于可穿戴设备,如加速计、陀螺仪等。这些设备需要老年人长期佩戴,不仅影响了老年人的舒适度和生活习惯,还存在着电池续航、数据上传等问题,难以被广泛接受。随着计算机视觉技术的快速发展,基于视觉的跌倒检测系统应运而生,其非接触式、被动监测的特性,使其在居家养老场景中具有广阔的应用前景。本文将探讨基于计算机视觉实现居家老人跌倒检测及预警系统的关键技术、挑战与未来发展方向,旨在为构建智慧养老的坚实防线提供参考。

一、基于计算机视觉的跌倒检测系统原理

基于计算机视觉的跌倒检测系统利用摄像头采集室内环境视频,通过图像处理和模式识别等技术,分析人体姿态、运动轨迹等信息,从而判断是否发生了跌倒事件。其核心原理可以概括为以下几个步骤:

  1. 视频采集与预处理: 利用摄像头实时采集室内视频,并进行预处理操作,如图像去噪、光照补偿、背景差分等,以提高图像质量,减少干扰,为后续特征提取奠定基础。

  2. 人体检测与跟踪: 利用人体检测算法(如YOLO、SSD等)识别视频中的人体目标,并利用目标跟踪算法(如Kalman滤波、SORT等)对人体进行持续跟踪,获取人体的位置、大小等信息。

  3. 特征提取: 从人体图像中提取有效的特征,用于描述人体的姿态和运动状态。常用的特征包括:

    • 姿态特征:

       通过姿态估计算法(如OpenPose、DeepLabCut等)识别人体关键点(如头部、肩部、肘部、膝盖等)的位置信息,构建人体骨骼模型,用于分析人体姿态。

    • 运动特征:

       计算人体的速度、加速度、运动方向等信息,用于描述人体的运动状态。可以基于光流法、帧间差分等方法进行运动估计。

    • 形状特征:

       提取人体轮廓的面积、周长、长宽比等信息,用于判断人体是否处于异常姿态。

  4. 跌倒判别: 基于提取的特征,利用机器学习或深度学习算法,建立跌倒判别模型。常用的方法包括:

    • 传统机器学习方法:

       利用支持向量机(SVM)、决策树、随机森林等分类器,训练跌倒判别模型。需要人工设计特征,对特征的选择和提取要求较高。

    • 深度学习方法:

       利用卷积神经网络(CNN)、循环神经网络(RNN)等模型,自动学习图像中的特征,具有更强的特征提取能力和泛化能力。常用的模型包括基于CNN的2D卷积模型、基于RNN的3D卷积模型和LSTM模型等。

  5. 预警机制: 当系统检测到跌倒事件发生时,立即触发预警机制,通知监护人或紧急救援人员,以便及时采取救援措施。预警方式可以包括短信通知、APP推送、语音呼叫等。

二、关键技术与挑战

构建高效、可靠的居家老人跌倒检测及预警系统,需要克服以下关键技术挑战:

  1. 光照变化的影响: 室内光照条件往往不稳定,光照强度的变化会严重影响图像的质量,从而降低跌倒检测的准确率。因此,需要采用鲁棒的光照补偿算法,减少光照变化的影响。

  2. 遮挡问题: 居家环境中,人体可能被家具、墙壁等物体遮挡,导致人体检测和姿态估计的准确率下降。需要采用更先进的人体检测和姿态估计算法,以及遮挡处理技术,提高系统对遮挡的鲁棒性。

  3. 复杂背景的干扰: 室内环境背景复杂,包含各种物体和纹理,容易对人体检测和跟踪造成干扰。需要采用更有效的背景建模和差分算法,以及目标跟踪算法,提高系统对复杂背景的适应性。

  4. 姿态多样性: 跌倒姿态具有多样性,老年人可能以不同的方式跌倒,例如向前跌倒、向后跌倒、侧向跌倒等。需要构建更丰富的跌倒姿态数据集,并采用更先进的深度学习模型,提高系统对不同跌倒姿态的识别能力。

  5. 误报率问题: 跌倒检测系统需要尽可能地降低误报率,避免频繁的误报导致监护人的疲劳和麻痹。需要优化特征提取和分类算法,提高系统的准确率和召回率。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值