✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、引言
多变量时间序列数据广泛存在于金融市场、气象监测、工业生产等众多领域,精准预测其未来趋势对决策制定、风险防控等具有关键意义。传统预测方法在处理复杂非线性关系和多变量交互时存在局限,而深度学习凭借强大的数据处理能力成为研究热点。双向时序卷积网络(BiTCN)、长短期记忆网络(LSTM)和注意力机制(Attention)在时间序列预测中各自展现出良好性能,将三者有机结合构建的 BiTCN-LSTM-Attention 模型,能够更全面地捕捉时间序列的特征和依赖关系,为多变量时间序列预测带来新突破。
二、BiTCN、LSTM 和 Attention 原理解析
2.1 双向时序卷积网络(BiTCN)
BiTCN 是在时序卷积网络(TCN)基础上引入双向结构 。TCN 通过因果卷积保证输出仅依赖过去和当前输入,扩张卷积扩大感受野,残差连接缓解梯度消失问题,用于提取时间序列特征。而 BiTCN 在 TCN 的基础上,增加反向的卷积操作,使得网络不仅能从过去时刻的信息中提取特征,还能利用未来时刻的信息,从而更全面地捕捉时间序列的上下文信息 。这种双向结构对于挖掘时间序列中隐含的复杂依赖关系具有显著优势,能够有效提升模型对序列特征的提取能力。
2.2 长短期记忆网络(LSTM)
LSTM 作为循环神经网络(RNN)的改进版本,专门设计用于解决 RNN 在处理长序列时的梯度消失和长期依赖问题 。LSTM 通过引入细胞状态和门控机制(输入门、遗忘门、输出门),能够对信息进行选择性地记忆和遗忘 。细胞状态像一条传送带,允许信息在序列中长时间传递,而门控机制则控制信息的流入和流出。输入门决定当前输入的信息哪些将被添加到细胞状态中,遗忘门控制细胞状态中哪些信息将被保留或遗忘,输出门根据细胞状态和当前输入决定输出内容 。这种独特的结构使得 LSTM 能够有效地处理时间序列中的长期依赖信息,在复杂的时间序列预测任务中发挥重要作用。
2.3 注意力机制(Attention)
注意力机制模拟人类的注意力分配过程,能够让模型在处理数据时聚焦于关键信息 。在多变量时间序列预测场景下,不同变量在不同时刻对预测结果的贡献程度存在差异,注意力机制通过计算每个变量在各个时刻的权重,突出对预测结果影响较大的信息,抑制无关或次要信息 。通过这种方式,模型可以更精准地捕捉到时间序列中对预测有重要价值的特征,从而提高预测的准确性和可靠性。
三、BiTCN-LSTM-Attention 模型架构
3.1 整体架构设计
BiTCN-LSTM-Attention 模型主要由 BiTCN 层、LSTM 层和 Attention 层依次串联构成 。多变量时间序列数据首先输入到 BiTCN 层,经过双向的因果卷积和扩张卷积操作,提取时间序列在正、反两个方向上的局部特征和长距离依赖关系;BiTCN 层的输出传递给 LSTM 层,LSTM 层利用其门控机制进一步挖掘时间序列中的长期依赖信息;最后,LSTM 层的输出进入 Attention 层,Attention 层通过计算注意力权重,对不同变量和时刻的信息进行加权融合,从而得到最终的预测结果 。
3.2 各层协同工作机制
BiTCN 层通过双向卷积运算,为 LSTM 层提供包含丰富上下文信息的特征表示,使得 LSTM 层能够基于更全面的信息进行长期依赖关系的挖掘 。LSTM 层处理后的特征包含了时间序列的关键信息,但不同部分的重要性有所不同。Attention 层根据 LSTM 层输出的特征,计算每个变量在不同时刻的注意力权重,这些权重反映了各信息对预测结果的重要程度 。通过加权融合,模型能够聚焦于关键信息,从而实现更准确的多变量时间序列预测。
⛳️ 运行结果
🔗 参考文献
[1] Wang W C , Ye F R , Wang Y Y ,et al.A singular spectrum analysis-enhanced BiTCN-selfattention model for runoff prediction[J].Earth Science Informatics, 2025, 18(1):1-29.DOI:10.1007/s12145-024-01524-y.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇