✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在大数据与人工智能飞速发展的当下,多变量回归预测在金融分析、能源管理、交通流量预测等诸多领域成为关键技术。比如预测股票价格走势、预估能源消耗总量、判断交通拥堵程度等,都需要对多个相关变量进行分析预测。传统预测方法在面对复杂多变的多变量数据时,往往难以达到理想效果。而卷积神经网络(CNN)、门控循环单元(GRU)以及它们的组合模型 CNN-GRU,凭借强大的数据处理能力,为多变量回归预测带来了全新解决方案。今天就带大家一起深入了解这三个 “宝藏” 模型!
一、CNN、GRU 与 CNN-GRU:原理大揭秘
1.1 卷积神经网络(CNN)
CNN 就像一位擅长 “提取局部特征” 的高手。它最初在图像识别领域大展拳脚,后来在多变量回归预测中也表现出色。CNN 的核心组件是卷积层、池化层和全连接层。卷积层通过卷积核在数据上滑动,进行卷积操作,就像用 “放大镜” 观察数据,能够提取出数据中相邻变量和时间步的局部特征。比如在分析电力负荷数据时,它可以捕捉到同一时刻电压、电流、功率等变量之间的关系,以及短时间内这些变量的变化趋势 。
池化层则像是一个 “精简大师”,它的作用是降低数据维度,减少计算量,同时保留数据的主要特征,防止模型在训练过程中出现过拟合。最后,全连接层把池化层输出的特征整合起来,输出最终的预测结果 。
1.2 门控循环单元(GRU)
GRU 是循环神经网络(RNN)的 “升级加强版”。RNN 虽然能处理具有时间顺序的数据,但在处理长序列时,容易出现 “梯度消失” 问题,导致难以记住很久以前的信息。GRU 引入了更新门和重置门,成功解决了这个难题。
更新门决定了前一时刻的状态有多少信息能保留到当前时刻,就像一个 “筛选器”,筛选出重要的历史信息;重置门控制当前输入与前一时刻状态的结合程度。通过这两个门的协作,GRU 能够有效地捕捉时间序列中的长期依赖关系。例如在预测天气变化时,它可以记住过去数天甚至数月的气温、湿度、气压等变量信息,用于预测未来天气情况 。
1.3 卷积门控循环单元(CNN-GRU)
CNN-GRU 模型就像是 CNN 和 GRU 的 “强强联合”。它先利用 CNN 对多变量时间序列数据进行局部特征提取,挖掘数据中短时间和小范围内的特征模式;然后把 CNN 提取到的特征输入给 GRU,GRU 再进一步处理这些特征,分析其中的长期依赖关系。这样一来,CNN-GRU 模型既能捕捉数据的 “局部细节”,又能把握数据的 “长期趋势”,在多变量回归预测中更具优势
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇