✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在全球能源结构加速向清洁化、低碳化转型的大背景下,分布式能源的大规模接入使得多微网系统在能源领域的地位愈发重要。多微网主体间的能源共享不仅能够提高能源利用效率、降低运行成本,还能增强能源供应的可靠性与稳定性。然而,各微网主体作为独立的利益个体,在能源共享过程中存在决策博弈与协调难题。将纳什博弈与交替方向乘子法(ADMM)相结合,为解决多微网主体能源共享问题提供了新的思路与方法,成为当前能源领域的研究热点。
多微网主体能源共享背景与意义
1. 多微网系统发展现状
随着太阳能、风能等可再生能源的广泛应用,多微网系统逐渐兴起。每个微网都包含分布式电源、储能装置、负荷等单元,既可以与大电网并网运行,也能在必要时孤岛运行。不同微网由于地理位置、能源资源、负荷特性的差异,其能源生产与消费存在不均衡现象。例如,某些微网在光照充足时段光伏发电过剩,而另一些微网可能因负荷高峰出现能源短缺。这种不均衡性为多微网主体间的能源共享创造了条件。
2. 能源共享的重要性
多微网主体进行能源共享,能够实现能源资源的优化配置。通过共享剩余能源,可减少微网向大电网的购电量,降低运行成本;同时,增强微网应对能源波动的能力,提高能源供应的可靠性。此外,能源共享还有助于促进可再生能源的消纳,推动能源系统向绿色低碳方向发展,对实现 “双碳” 目标具有重要意义。
纳什博弈与交替方向乘子法原理
1. 纳什博弈原理
纳什博弈是一种非合作博弈理论,其核心概念是纳什均衡。在多微网能源共享场景中,每个微网主体都是博弈参与者,它们根据自身利益最大化原则进行决策。各微网主体的决策相互影响,当达到纳什均衡时,任何一个微网主体都无法通过单方面改变自己的策略来提高自身利益。例如,在确定能源交易价格和交易量时,各微网主体会考虑其他微网的策略,在竞争与合作中寻求最优决策,实现自身利益与整体利益的平衡。
2. 交替方向乘子法(ADMM)原理
交替方向乘子法是一种用于求解分布式优化问题的算法,它将复杂的优化问题分解为多个子问题,并通过交替求解子问题和更新乘子来逐步逼近最优解。ADMM 算法的优势在于能够处理大规模、分布式的优化问题,在多微网系统中,它可以有效协调各微网主体之间的能源共享决策,解决微网间的信息交互与协同优化难题,在保证各微网主体独立决策的同时,实现系统整体的最优运行。
基于纳什博弈和 ADMM 的多微网能源共享模型构建与求解
1. 模型构建
构建多微网主体能源共享的纳什博弈 - ADMM 模型时,首先明确各微网主体的目标函数。每个微网主体以自身运行成本最小化或收益最大化为目标,成本或收益函数包括能源生产、存储、交易等环节的费用。同时,考虑微网运行的约束条件,如功率平衡约束、储能容量约束、设备运行限制等。基于这些目标函数和约束条件,建立多微网主体之间的博弈关系,通过纳什均衡理论确定各微网主体的最优策略。
2. 模型求解
利用交替方向乘子法对构建的模型进行求解。将多微网能源共享的优化问题分解为各微网主体的子问题和系统层面的协调问题。在每次迭代中,各微网主体独立求解自身的子问题,根据自身的目标函数和约束条件确定最优的能源生产、消费和交易策略;然后,通过信息交互,在系统层面根据 ADMM 的原理更新乘子,协调各微网主体之间的决策,逐步收敛到全局最优解,实现多微网主体能源共享的优化配置。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇