【电力系统】基于多目标哈里斯鹰算法及模型预测控制(MPC)的储能和风电平抑波动研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

随着全球对清洁能源的需求日益增长,风力发电凭借其资源丰富、环境友好等优势,在电力系统中的占比不断攀升。然而,风电的间歇性和波动性特征显著,风速的随机变化会导致风电出力大幅波动,这给电力系统的频率稳定、电压调节以及可靠供电带来了巨大挑战。例如,在风速骤变时,风电功率可能在短时间内剧烈变化,若电网无法及时应对,可能引发电压崩溃、频率偏移等问题,严重威胁电力系统的安全稳定运行。

储能系统具有灵活的充放电特性,能够在风电功率过剩时储存电能,在风电功率不足时释放电能,成为平抑风电波动、提升电力系统稳定性的有效手段。但如何实现储能与风电的协同优化运行,以最小的成本达到最佳的平抑效果,成为亟待解决的问题。多目标哈里斯鹰算法(Multi - objective Harris Hawks Optimization,MOHHO)具有强大的全局搜索能力和多目标优化优势,模型预测控制(Model Predictive Control,MPC)能够根据系统预测模型和约束条件,滚动优化控制策略,二者结合为储能和风电的协同控制提供了新途径。研究基于多目标哈里斯鹰算法及模型预测控制的储能和风电平抑波动方法,对于提高风电消纳能力、保障电力系统稳定运行具有重要的理论意义和实际应用价值。

二、理论基础

2.1 多目标哈里斯鹰算法(MOHHO)

哈里斯鹰算法(Harris Hawks Optimization,HHO)是一种模拟哈里斯鹰群体捕食行为的智能优化算法。在自然界中,哈里斯鹰通过合作包围、突击等策略追捕猎物。HHO 算法将优化问题的解空间视为猎物的活动区域,鹰群成员对应优化问题的候选解。算法主要包括全局探索和局部开发两个阶段。在全局探索阶段,鹰群通过多种策略在解空间中搜索潜在的猎物位置,模拟鹰群在广阔区域寻找猎物的过程;在局部开发阶段,鹰群对选定的潜在位置进行精细搜索,以找到更优的解,类似于鹰群对猎物进行围攻和捕捉。

多目标哈里斯鹰算法(MOHHO)在 HHO 基础上,引入了适应多目标优化的机制,如外部档案集、拥挤度计算等。外部档案集用于存储搜索过程中发现的非支配解,随着算法迭代更新,保留更优的非支配解;拥挤度计算则用于评估非支配解在目标空间中的分布情况,使算法能够找到分布均匀、多样性好的非支配解集,从而有效解决储能和风电协同控制中的多目标优化问题,如在平抑波动的同时兼顾成本最小化和系统稳定性最大化等目标 。

2.2 模型预测控制(MPC)

模型预测控制(MPC)是一种基于模型的先进控制策略,其核心思想是利用系统的预测模型,在每个采样时刻,根据当前系统状态和预测的未来一段时间内的系统行为,基于一定的性能指标和约束条件,求解一个有限时域内的优化问题,得到当前时刻的最优控制序列,并将该序列的第一个控制量作用于系统。随着系统状态的更新,重复上述过程,实现滚动优化控制。

在储能和风电系统中,MPC 首先需要建立风电出力预测模型和储能系统模型。风电出力预测模型根据历史风速、风向等数据,结合气象预报信息,预测未来一段时间内的风电功率;储能系统模型则描述储能系统的充放电特性、容量变化等。然后,基于这些模型,MPC 在每个控制周期内预测风电功率的波动情况,并以平抑风电波动、优化储能充放电策略等为目标,在满足储能容量约束、充放电功率约束等条件下,求解优化问题,确定储能系统的充放电功率,实现对风电波动的实时有效平抑 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值