【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

在全球能源转型的大背景下,可再生能源在电力系统中的占比日益增加。风能和水能作为两种重要的可再生能源,具有显著的互补特性。风能具有间歇性和波动性,而水能可通过水库调节具备一定的可控性。将风 - 水电联合运行,能够有效平抑风电功率波动,提高能源利用效率,增强电力系统对可再生能源的消纳能力 。然而,如何实现风 - 水电联合系统的优化运行,以平衡发电效益、系统稳定性与环境影响等多目标,成为亟待解决的关键问题。粒子群优化算法(Particle Swarm Optimization,PSO)作为一种高效的智能优化算法,凭借其参数设置简单、收敛速度快等优势,在多目标优化领域展现出巨大的应用潜力,为风 - 水电联合优化运行提供了新的解决思路。

二、风 - 水电联合运行的特性与挑战

2.1 互补特性

  1. 时间尺度互补:风电功率在短时间尺度(分钟至小时级)内波动剧烈,但其年际波动相对较小。而水电可通过水库的调节作用,在日时间尺度上对风电的短期波动进行平滑。同时,水电受季节性径流影响,在丰水期和枯水期发电能力差异较大,风电则可在水电发电低谷期提供电量补充,实现季节尺度上的互补 。例如,在我国西北地区,冬季水电发电量因河流枯水而减少,此时风电可凭借稳定的风能资源填补电力缺口。
  1. 容量互补:水电具有快速响应和灵活调节的特性,可作为风电的备用电源。当风电出力因风速变化而大幅波动时,水电能够迅速调整出力,平抑风电的随机性,减少弃风现象。同时,风电的大规模接入也能缓解水电在枯水期的发电压力,提高整个电力系统的供电可靠性 。

2.2 面临挑战

  1. 多目标优化难题:风 - 水电联合运行需要同时考虑多个目标,如最大化发电收益、最小化弃风电量、保障生态流量以维护河流生态平衡等。这些目标之间往往相互冲突,例如追求高发电收益可能导致生态流量难以保障,如何在多个目标之间找到平衡是优化运行的难点 。
  1. 不确定性因素:风电功率受风速、风向等气象因素影响,具有高度不确定性。尽管风速预测技术不断发展,但仍存在一定误差。水电的发电能力则依赖于径流,而径流受降水、气候等因素影响,同样存在不确定性。这些不确定性增加了风 - 水电联合系统优化调度的难度 。
  1. 系统复杂性:风 - 水电联合系统涉及多个子系统,包括风电场、水电站、输电网络等,各子系统之间相互关联、相互影响。不同类型的风电机组、水轮机以及复杂的电网拓扑结构,使得系统的数学模型复杂,传统的优化方法难以有效求解 。

三、粒子群优化算法原理

3.1 基本概念

粒子群优化算法源于对鸟群觅食行为的模拟。在该算法中,每个粒子代表问题的一个潜在解,粒子在解空间中运动,通过不断更新自身位置来搜索最优解 。粒子在每次迭代中,根据自身历史最优位置(Pbest)和群体历史最优位置(Gbest)调整速度和位置,逐步向最优解逼近 。

3.2 算法流程

  1. 初始化粒子群:在解空间中随机生成一群粒子,每个粒子具有初始位置和速度。粒子的位置代表风 - 水电联合系统中各决策变量(如风电出力分配、水电水库水位调节等)的取值,速度则决定了粒子在解空间中移动的方向和速率 。
  1. 评估适应度:根据风 - 水电联合优化的目标函数(如发电效益最大化、弃风电量最小化等),计算每个粒子当前位置对应的适应度值。适应度值反映了该粒子所代表的解在当前优化目标下的优劣程度 。
  1. 更新个体与群体最优解:每个粒子记录自身搜索到的最优位置(Pbest),整个粒子群记录搜索到的最优位置(Gbest)。若当前粒子的适应度值优于其历史最优位置的适应度值,则更新 Pbest;若当前粒子的适应度值优于 Gbest 的适应度值,则更新 Gbest 。
  1. 更新速度和位置:根据粒子的当前位置、速度、Pbest 和 Gbest,利用速度更新公式和位置更新公式对粒子的速度和位置进行更新。速度更新公式综合考虑了粒子的惯性、向自身历史最优位置学习的能力以及向群体历史最优位置学习的能力,通过调整公式中的参数(如惯性权重 ω、学习因子 c1 和 c2),可以平衡粒子的全局搜索和局部搜索能力 。
  1. 迭代终止判断:重复上述步骤,直到达到预定的迭代次数或满足其他停止条件(如适应度值收敛到一定精度)。此时,Gbest 所对应的位置即为粒子群优化算法搜索到的最优解,也就是风 - 水电联合系统的优化运行方案 。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值