【DNN预测】基于深度神经网络(DNN)模型实现数据驱动建模预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在工程计算、环境监测、工业生产等领域,“预测” 是实现系统优化与风险管控的关键环节 —— 例如,预测流体在直管中的压力降以优化管道设计,预测设备运行参数以提前故障预警,预测环境污染物浓度以制定管控策略。传统预测方法(如经验公式、机理建模)依赖明确的物理规律或统计假设,在面对 “高维变量”“非线性耦合”“数据稀疏” 的复杂系统时,往往存在 “建模难度大”“泛化能力弱”“预测精度低” 的局限。

深度神经网络(Deep Neural Network, DNN)作为数据驱动建模的核心工具,通过 “多层神经元的非线性映射” 从海量数据中自动挖掘隐藏规律,无需依赖先验物理机理,为复杂系统预测提供了全新解决方案。其核心优势体现在三方面:

  1. 强非线性拟合能力:DNN 通过激活函数(如 ReLU、Sigmoid)与多层网络结构,可逼近任意复杂的非线性函数 —— 例如,在流体压力降预测中,能同时拟合 “直径、流速、流体物性” 与 “压力降” 之间的非线性耦合关系,无需手动推导经验公式;
  1. 高维变量处理能力:面对工业场景中 “数十甚至数百个输入变量”(如设备运行中的温度、压力、流量、转速),DNN 可通过全连接层自动学习变量间的关联权重,避免传统方法中 “维度灾难” 导致的计算爆炸;
  1. 动态自适应更新:当系统特性随时间变化(如管道老化导致粗糙度增大、设备磨损导致效率下降)时,DNN 可通过增量学习(仅用新数据微调模型)快速适配新场景,无需重构模型,显著降低维护成本。

这些优势使 DNN 在数据驱动预测中广泛应用,尤其适用于 “机理复杂但数据充足” 的场景 —— 如你此前关注的流体力学领域,可基于历史管道运行数据(直径、流速、流体密度、粘度、压力降)构建 DNN 模型,实现不同工况下压力降的快速预测,精度甚至可超越传统达西 - 魏斯巴赫公式(尤其在过渡流或非牛顿流体场景)。

⛳️ 运行结果

📣 部分代码

global Optnet;

global hiddenLayers_best;

global Emin;

%global ANNInputNum;

global ydt_best

global yst_best

global ydtt_best

global ystt_best

global SearchPolicy

global NumofEval

global DataSetDivideRate

global ro1

global ro2

global C1

global C2

xn=x;

% Processing for valid neural architecture description

hiddenLayersRaw=round(C);

hiddenLayers=nonzeros(hiddenLayersRaw)';

TrainingMethod='trainlm';

net = fitnet(hiddenLayers,TrainingMethod);

net.trainParam.showWindow=false;

net.divideParam.trainRatio=DataSetDivideRate(1);

net.divideParam.valRatio=DataSetDivideRate(2);

net.divideParam.testRatio=DataSetDivideRate(3);

%fprintf('***Candidate Neural Architechure = %d \n',hiddenLayers);

for i=1:NumofEval

[net trainrecord]= train(net,xn,yd);

xt=xn(:,trainrecord.trainInd);

ydt=yd(:,trainrecord.trainInd);

yst=sim(net,xt);

% Validation set performance can be considered for test set performance

xtt=xn(:,[trainrecord.testInd trainrecord.valInd]);

ydtt=yd(:,[trainrecord.testInd trainrecord.valInd]);

ystt=sim(net,xtt);

🔗 参考文献

[1] 吴佳慧,崔雨萌,魏子岚,等.基于深度神经网络的年龄预测模型的构建和评价[J].标记免疫分析与临床, 2024, 31(3):519-526.

[2] 田德红,何建敏.基于变异粒子群优化与深度神经网络的 航空弹药消耗预测模型[J].南京理工大学学报, 2018, 42(6):7.DOI:10.14177/j.cnki.32-1397n.2018.42.06.012.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

### 深度神经网络DNN预测方法及其实现 #### 1. 预测的基础理论 深度神经网络DNN)是一种多层的人工神经网络,其核心特性在于通过多个隐藏层提取输入数据的特征并进行复杂的非线性映射[^2]。在完成训练之后,DNN可以用于对新样本进行预测预测过程实际上是利用已训练好的权重参数和偏置项,将新的输入数据传递给模型并通过前向传播计算得到输出。 #### 2. MATLAB中的DNN预测实现MATLAB中,可以通过`feedforwardnet`函数构建一个全连接的前馈神经网络,并对其进行训练后执行预测操作。以下是具体的实现方式: ```matlab % 定义隐藏层数量 hiddenSizes = [10, 5]; % 假设两层隐藏层,每层分别有10个和5个神经元 % 创建神经网络 net = feedforwardnet(hiddenSizes); % 加载训练数据 inputs = ...; % 输入数据矩阵 targets = ...; % 输出标签矩阵 % 训练网络 net = train(net, inputs', targets'); % 使用测试集进行预测 testInputs = ...; % 测试集输入数据 predictedOutputs = net(testInputs'); % 执行预测 ``` 上述代码展示了如何定义、训练以及使用DNN模型来进行预测的过程[^3]。 #### 3. Python中的DNN预测实现 除了MATLAB外,在Python中也可以借助深度学习框架如TensorFlow或PyTorch轻松实现DNN预测功能。下面是一个基于Keras库的例子: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # 构建模型 model = Sequential() model.add(Dense(10, activation='relu', input_shape=(input_dim,))) # 第一层隐藏层 model.add(Dense(5, activation='relu')) # 第二层隐藏层 model.add(Dense(output_dim, activation='softmax')) # 输出层 # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 X_train = ... # 训练集输入 y_train = ... # 训练集标签 model.fit(X_train, y_train, epochs=10, batch_size=32) # 进行预测 X_test = ... # 测试集输入 predictions = model.predict(X_test) # 获取预测结果 ``` 这段代码说明了如何用Keras搭建一个多层感知机(MLP),并对测试数据做出分类预测[^4]。 #### 4. 关键技术要点 - **前向传播**:这是指从输入层经过各隐藏层直到输出层的数据流动方向。在此过程中不涉及任何反向调整权值的操作。 - **激活函数的选择**:常用的激活函数包括ReLU及其变体、Sigmoid、tanh等。不同的任务可能需要选择适合自己的激活函数以获得更好的性能表现。 - **损失函数的设计**:对于回归问题通常采用均方误差(MSE),而对于分类问题则更多地依赖交叉熵作为衡量标准之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值