Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning 论文解析

本文解析了一篇关于Crowd-aware Robot Navigation的研究论文,该研究运用注意力机制的深度强化学习方法,探讨了机器人如何在人群中智能导航。论文提出将人与机器人的交互以及人与人之间的交互纳入强化学习模型,并通过self-attention来理解环境中的动态关系。代码框架包括模仿学习和强化学习两个部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Crowd-Robot Interaction:Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning 论文解析

Crowd-Robot Interaction:Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning 论文解读

近期精读了一篇强化学习论文,在此分享一下,相互学习。

论文亮点

逾越人机交互到人群与机器人交互.

  1. 使用attention机制,重新定义了人与机器人之间的交互对;
  2. 在强化学习框架中包含了人机交互和人人交互的联合模型;

问题模型

这篇文章中,机器人考虑穿过n个人的导航任务,这个场景被描述成一个强化学习序列决策问题。每一个智能体或机器人都有自己的位置速度信息以及目标点的位置和偏好速度。强化学习中的state是一个联合state里面包含机器人的state和环境中人的state。最优策略期盼得到最优的回报return,表述如下:
在这里插入图片描述
Rt表示在t时刻所获得的奖励,V星是最优价值函数,Vpref是折扣系数中的正则项。
reward函数如下:

boosting-crowd-counting-via-multifaceted-attention是一种通过多方面注意力提升人群计数的方法。该方法利用了多个方面的特征来准确估计人群数量。 在传统的人群计数方法中,往往只关注人群的整体特征,而忽略了不同区域的细节。然而,不同区域之间的人群密度可能存在差异,因此细致地分析这些区域是非常重要的。 该方法首先利用卷积神经网络(CNN)提取图像的特征。然后,通过引入多个注意力机制,分别关注图像的局部细节、稀疏区域和密集区域。 首先,该方法引入了局部注意力机制,通过对图像的局部区域进行加权来捕捉人群的局部特征。这使得网络能够更好地适应不同区域的密度变化。 其次,该方法采用了稀疏区域注意力机制,它能够识别图像中的稀疏区域并将更多的注意力放在这些区域上。这是因为稀疏区域往往是需要重点关注的区域,因为它们可能包含有人群密度的极端变化。 最后,该方法还引入了密集区域注意力机制,通过提取图像中人群密集的区域,并将更多的注意力放在这些区域上来准确估计人群数量。 综上所述,boosting-crowd-counting-via-multifaceted-attention是一种通过引入多个注意力机制来提高人群计数的方法。它能够从不同方面细致地分析图像,并利用局部、稀疏和密集区域的特征来准确估计人群数量。这个方法通过考虑人群分布的细节,提供了更精确的人群计数结果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值