Crowd-Robot Interaction:Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning 论文解析
Crowd-Robot Interaction:Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning 论文解读
近期精读了一篇强化学习论文,在此分享一下,相互学习。
论文亮点
逾越人机交互到人群与机器人交互.
- 使用attention机制,重新定义了人与机器人之间的交互对;
- 在强化学习框架中包含了人机交互和人人交互的联合模型;
问题模型
这篇文章中,机器人考虑穿过n个人的导航任务,这个场景被描述成一个强化学习序列决策问题。每一个智能体或机器人都有自己的位置速度信息以及目标点的位置和偏好速度。强化学习中的state是一个联合state里面包含机器人的state和环境中人的state。最优策略期盼得到最优的回报return,表述如下:
Rt表示在t时刻所获得的奖励,V星是最优价值函数,Vpref是折扣系数中的正则项。
reward函数如下: