双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例

引入

        在做悬架垂向运动控制或动态力学计算时,双质量振动系统微分方程是所有工作的基础,常见如下形式:(注意z,z_{t},z_{r}分别是簧上质量、簧下质量、路面的垂向位移变化)

        这里给出两种动力学方程:

(1)                                \left.\left\{\begin{array}{l}M\ddot{z}=k\left(z_t-z\right)+c\left(\dot{z}_t-\dot{z}\right)\\m\ddot{z}_t=k_t\left(z_r-z_t\right)-k\left(z_t-z\right)-c\left(\dot{z}_t-\dot{z}\right)\end{array}\right.\right.

(2)                                \begin{cases}M\ddot{z}=-k(z-z_{t})-c(\dot{z}-\dot{z}_{t})\\m\ddot{z}_{t}=k(z-z_{t})+c(\dot{z}-\dot{z}_{t})-k_{t}(z_{t}-z_{r})\end{cases}

        仔细观察,这两个方程组是完全一样的。在研读论文时,可能会发现一个令人懊恼的问题:不同的论文有不同的写法,在我们试着读懂这些论文时,浪费了大量的时间在推导这一个小小的公式上,其实只是不同作者的思路不同罢了。在双自由度振动系统问题上,大致分为两类,而最后得出的动力学方程也不外乎以上“两种”形式。

        下面分别给出这两种形式的推导过程。

(1)正常思维

        首先假设 zr > zt > z , 也就是假设  路面位移  >  簧下质量位移  >  簧上质量位移 。(其实这个假设没有必要,因为这是事实。因为路面振动引起了簧下质量振动,又因为簧下质量振动引起了簧上质量振动,振动系统的目的就是要减震,上边的位移比下边小也很好理解。)

        基于此,我们可以进行受力分析,然后利用牛顿定律得出方程。

        受力分析:
                                                                        

        其中,惯性力M\ddot{z}m\ddot{z}的方向非常重要,记住:惯性力方向与加速度方向相反

        对于M,因为簧下质量位移  >  簧上质量位移,弹簧和阻尼都被压缩,所以k弹簧和阻尼力都向上;又因为在这种假设情况下,是簧下质量位移引起的簧上质量位移,故M具有向上运动趋势,惯性力M\ddot{z}向下。

        对于m,因为路面位移  >  簧下质量位移  >  簧上质量位移,  所以k_{t}弹簧力向上, k弹簧和阻尼力方向与M所受这两个力方向相反,所以向下;又因为在这种假设情况下,是路面位移引起的簧下质量位移,故m有向上加速趋势,所以这里加速度方向向上,惯性力m\ddot{z}方向向下。

        根据受力分析结果以及牛顿定律不难得出(1)式。

(2)逆向思维

不同的人考虑问题从不同角度出发,对于(2)式的推导,可以这样理解:

        假设M之上存在一个 弹簧 k_{0} 或者 阻尼 c_{0} (无关紧要)连接着M与天空,这同样是著名的天钩控制(sky-hook)理论的理想状态。模型如下:

        这里我们假设天空也存在一个位移 z_{0} ,并且假设 天空位移 > 簧上质量位移 > 簧下质量位移 > 路面位移。基于此,

受力分析:

                                           

相信通过对(1)式的理解学习,第(2)种情况的受力分析就不难理解了。

        对于M,因为 簧上质量位移  >  簧下质量位移,弹簧 k 和阻尼都被拉伸,所以k弹簧和阻尼力都向下,弹簧 k_{0} 被拉伸, k_{0} 弹簧力向上;又因为这种假设情况下,是簧上质量位移引起的簧下质量位移,故M具有向上运动趋势,惯性力M\ddot{z}向下。

        对于m,因为簧上质量位移  >  簧下质量位移  >  路面位移, k_{t} 弹簧被拉伸,所以 k_{t} 弹簧力向下,k弹簧和阻尼力方向与 M所受这两个力 方向相反,所以向上;又因为在这种假设情况下,是簧下质量位移引起的路面位移,故m有向上加速趋势,所以这里加速度方向向上,惯性力m\ddot{z}方向向下。

可以得到以下方程:

  (3)              ​​​​​​​                \begin{cases}M\ddot{z}=k_{0}(z_{0}-z)-k(z-z_{t})-c(\dot{z}-\dot{z}_{t})\\m\ddot{z}_{t}=k(z-z_{t})+c(\dot{z}-\dot{z}_{t})-k_{t}(z_{t}-z_{r})\end{cases}

        这里多了 k_{0} ,因为实际上不存在这样一个弹簧连接天空和M,所以可以令 k_{0} =0,消去这一项,从而得到(2)式。


        可以发现,两种情况下,M和m的惯性力方向都是向下的,因为无论是收到推力还是拉力,合力方向向上,加速度方向向上,惯性力方向也就向下了。

        无论是  认为 地面位移引起振动 还是 认为M位移引起振动,最后得到的微分方程是一样的,或许放这样两张图更容易理解:

(1)路面位移引起
(2)M位移引起

    

  总之,不论在哪种情况下,最后得出的方程肯定是一样的,码字不易,你懂的。

对于汽车悬挂系统建模与仿真,通常会涉及到多体动力学分析。这类研究可以通过多种软件工具来完成,这些工具有助于创建精确的物理模型,并模拟车辆在不同条件下的行为。 以下是几种常用的建模和仿真的方法及相应的工具: 采用MATLAB/Simulink进行线性化处理和控制算法设计 ```matlab % 创建一个简单的二阶质量-弹簧-阻尼器系统模型的子 m = 1; % 质量 (kg) k = 100; % 弹簧常数 (N/m) c = 5; % 阻尼系数 (Ns/m) sys = tf([1], [m c k]); % 定义传递函数 step(sys); % 绘制单位阶跃响应图 ``` Simulink可以用来构建更复杂的非线性悬挂系统模型,包括各种传感器反馈机制。 利用ADAMS/Car专注于机械系统的运动学和动力学特性 ADAMS(Automatic Dynamic Analysis of Mechanical Systems) 是一种广泛使用的多体动力学仿真平台,特别适合用于开发详细的悬挂几何结构以及执行高级别的性能预测。 应用ANSYS Workbench结合有限元法(FEM)做静态、瞬态或频域内的应力应变计算 ANSYS能够帮助工程师理解复杂载荷条件下组件的行为模式,确保设计方案满足强度和耐久性的要求。 借助AMESim或者Dymola探索液压元件的影响并与控制系统集成 这两种软件都支持建立包含流体力学在内的综合模型,适用于研发带有主动或半主动减震装置的现代悬挂技术。 选择合适的工具取决于具体项目的需求和个人偏好;同时也可以考虑开源选项如OpenModelica,它提供了类似的功能但成本较低。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@Duang~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值