[2021ICPC济南 L] Strange Series (Bell 数 多项式exp)

题意

T T T 组输入,给定一个 n n n 次多项式 f ( x ) = a 0 + a 1 x + ⋯ + a n x n f(x) = a_0 + a_1x + \cdots + a_nx ^ n f(x)=a0+a1x++anxn,定义 S = ∑ i = 0 ∞ f ( i ) i ! S = \sum\limits_{i = 0} ^ {\infty} \dfrac{f(i)}{i!} S=i=0i!f(i),可以证明 S S S 一定是 e e e 的倍数,即 S = p × e S = p \times e S=p×e,求 p p p 998   244   353 998\,244\,353 998244353 取模。

1 ≤ T ≤ 100 , 0 ≤ n ≤ 1 0 5 , 0 ≤ a i < 998   244   353 1 \le T \le 100, 0 \le n \le 10 ^ 5,0 \le a_i < 998\,244\,353 1T100,0n105,0ai<998244353

分析:

首先将 f ( x ) f(x) f(x) 代入 S S S
∑ i = 0 ∞ 1 i ! ∑ j = 0 n a j × i j \sum_{i = 0} ^ {\infty}\frac{1}{i!} \sum_{j = 0} ^ {n}a_j \times i ^ j i=0i!1j=0naj×ij
看到自然数幂想到展开 i k = ∑ j = 0 k { k j } i j ‾ i ^ k = \sum\limits_{j = 0} ^ {k} {k \brace j} i ^{\underline j} ik=j=0k{jk}ij,代入得
∑ i = 0 ∞ 1 i ! ∑ j = 0 n a j ∑ k = 0 j { j k } i k ‾ \sum_{i = 0} ^ {\infty} \frac{1}{i!} \sum_{j = 0} ^ {n}a_j \sum_{k = 0} ^ {j} {j \brace k} i ^ {\underline k} i=0i!1j=0najk=0j{kj}ik
交换求和次序,先对 i i i 求和
∑ j = 0 n a j ∑ k = 0 j { j k } ∑ i = 0 ∞ i k ‾ i ! \sum_{j = 0} ^ {n}a_j \sum_{k = 0} ^ {j} {j \brace k} \sum_{i = 0} ^ {\infty} \frac{i ^ {\underline k}}{i!} j=0najk=0j{kj}i=0i!ik
把下降幂消掉
∑ j = 0 n a j ∑ k = 0 j { j k } ∑ i = k ∞ 1 ( i − k ) ! \sum_{j = 0} ^ {n}a_j \sum_{k = 0} ^ {j} {j \brace k} \sum_{i = k} ^ {\infty} \frac{1}{(i-k)!} j=0najk=0j{kj}i=k(ik)!1
做变换 ( i − k ) → i (i - k) \rightarrow i (ik)i
∑ j = 0 n a j ∑ k = 0 j { j k } ∑ i = 0 ∞ 1 i ! \sum_{j = 0} ^ {n}a_j \sum_{k = 0} ^ {j} {j \brace k} \sum_{i = 0} ^ {\infty} \frac{1}{i!} j=0najk=0j{kj}i=0i!1
由于 e = ∑ i = 0 ∞ 1 i ! e = \sum\limits_{i = 0} ^ {\infty} \dfrac{1}{i!} e=i=0i!1,所以原式为 e e e 的倍数得证,那么式子变为
∑ j = 0 n a j ∑ k = 0 j { j k } × e \sum_{j = 0} ^ {n}a_j \sum_{k = 0} ^ {j} {j \brace k} \times e j=0najk=0j{kj}×e
事实上 Bell n = ∑ i = 0 n { n i } \text{Bell}_{n} = \sum\limits_{i = 0} ^ {n} {n \brace i} Belln=i=0n{in},其中 Bell n \text{Bell}_{n} Belln 为第 n n n 项贝尔数,代表 n n n 个元素的集合划分为任意非空子集的方案数,所以答案就为
∑ i = 0 n a i × Bell i \sum_{i = 0} ^ {n} a_i \times \text{Bell}_{i} i=0nai×Belli
考虑快速求解贝尔数,设贝尔数的 EGF \textbf{EGF} EGF B ( x ) = ∑ i = 0 ∞ F ( x ) i i ! B(x) = \sum\limits_{i = 0} ^ {\infty} \dfrac{F(x) ^ i}{i!} B(x)=i=0i!F(x)i,其中 F ( x ) = ∑ i = 1 ∞ x i i ! = e x − 1 F(x) = \sum\limits_{i = 1} ^ {\infty}\dfrac{x ^ i}{i!} = e ^ x - 1 F(x)=i=1i!xi=ex1,那么 B ( x ) = ∑ i = 0 ∞ ( e x − 1 ) i i ! = e e x − 1 B(x) = \sum\limits_{i = 0} ^ {\infty} \dfrac{(e ^ x - 1) ^ i}{i!} = e ^ {e ^ {x} - 1} B(x)=i=0i!(ex1)i=eex1,直接多项式 exp \text{exp} exp 就好了。

代码:

#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
constexpr int mod = 998244353;
int norm(int x) {
    if (x < 0) {
        x += mod;
    }
    if (x >= mod) {
        x -= mod;
    }
    return x;
}
template<class T>
T power(T a, int b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
struct Z {
    int x;
    Z(int x = 0) : x(norm(x)) {}
    int val() const {
        return x;
    }
    Z operator-() const {
        return Z(norm(mod - x));
    }
    Z inv() const {
        assert(x != 0);
        return power(*this, mod - 2);
    }
    Z &operator*=(const Z &rhs) {
        x = i64(x) * rhs.x % mod;
        return *this;
    }
    Z &operator+=(const Z &rhs) {
        x = norm(x + rhs.x);
        return *this;
    }
    Z &operator-=(const Z &rhs) {
        x = norm(x - rhs.x);
        return *this;
    }
    Z &operator/=(const Z &rhs) {
        return *this *= rhs.inv();
    }
    friend Z operator*(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res *= rhs;
        return res;
    }
    friend Z operator+(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res += rhs;
        return res;
    }
    friend Z operator-(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res -= rhs;
        return res;
    }
    friend Z operator/(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res /= rhs;
        return res;
    }
    friend istream &operator>>(istream &is, Z &a) {
        i64 v;
        is >> v;
        a = Z(v);
        return is;
    }
    friend ostream &operator<<(ostream &os, const Z &a) {
        return os << a.val();
    }
};
vector<int> rev;
vector<Z> roots{0, 1};
void dft(vector<Z> &a) {
    int n = a.size();
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i ++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    for (int i = 0; i < n; i ++) {
        if (rev[i] < i) {
            swap(a[i], a[rev[i]]);
        }
    }
    if (int(roots.size()) < n) {
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
            Z e = power(Z(3), (mod - 1) >> (k + 1));
            for (int i = 1 << (k - 1); i < (1 << k); i ++) {
                roots[i << 1] = roots[i];
                roots[i << 1 | 1] = roots[i] * e;
            }
            k ++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j ++) {
                Z u = a[i + j], v = a[i + j + k] * roots[k + j];
                a[i + j] = u + v, a[i + j + k] = u - v;
            }
        }
    }
}
void idft(vector<Z> &a) {
    int n = a.size();
    reverse(a.begin() + 1, a.end());
    dft(a);
    Z inv = (1 - mod) / n;
    for (int i = 0; i < n; i ++) {
        a[i] *= inv;
    }
}
struct Poly {
    vector<Z> a;
    Poly() {}
    Poly(const vector<Z> &a) : a(a) {}
    Poly(const initializer_list<Z> &a) : a(a) {}
    int size() const {
        return a.size();
    }
    void resize(int n) {
        a.resize(n);
    }
    Z operator[](int idx) const {
        if (idx < size()) {
            return a[idx];
        } else {
            return 0;
        }
    }
    Z &operator[](int idx) {
        return a[idx];
    }
    Poly mulxk(int k) const {
        auto b = a;
        b.insert(b.begin(), k, 0);
        return Poly(b);
    }
    Poly modxk(int k) const {
        k = min(k, size());
        return Poly(vector<Z>(a.begin(), a.begin() + k));
    }
    Poly divxk(int k) const {
        if (size() <= k) {
            return Poly();
        }
        return Poly(vector<Z>(a.begin() + k, a.end()));
    }
    friend Poly operator+(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i ++) {
            res[i] = a[i] + b[i];
        }
        return Poly(res);
    }
    friend Poly operator-(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i ++) {
            res[i] = a[i] - b[i];
        }
        return Poly(res);
    }
    friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        int sz = 1, tot = a.size() + b.size() - 1;
        while (sz < tot) {
            sz *= 2;
        }
        a.a.resize(sz);
        b.a.resize(sz);
        dft(a.a);
        dft(b.a);
        for (int i = 0; i < sz; i ++) {
            a.a[i] = a[i] * b[i];
        }
        idft(a.a);
        a.resize(tot);
        return a;
    }
    friend Poly operator*(Z a, Poly b) {
        for (int i = 0; i < int(b.size()); i ++) {
            b[i] *= a;
        }
        return b;
    }
    friend Poly operator*(Poly a, Z b) {
        for (int i = 0; i < int(a.size()); i ++) {
            a[i] *= b;
        }
        return a;
    }
    Poly &operator+=(Poly b) {
        return (*this) = (*this) + b;
    }
    Poly &operator-=(Poly b) {
        return (*this) = (*this) - b;
    }
    Poly &operator*=(Poly b) {
        return (*this) = (*this) * b;
    }
    Poly deriv() const {
        if (a.empty()) {
            return Poly();
        }
        vector<Z> res(size() - 1);
        for (int i = 0; i < size() - 1; i ++) {
            res[i] = (i + 1) * a[i + 1];
        }
        return Poly(res);
    }
    Poly integr() const {
        vector<Z> res(size() + 1);
        for (int i = 0; i < size(); i ++) {
            res[i + 1] = a[i] / (i + 1);
        }
        return Poly(res);
    }
    Poly inv(int m) const {
        Poly x{a[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
        }
        return x.modxk(m);
    }
    Poly log(int m) const {
        return (deriv() * inv(m)).integr().modxk(m);
    }
    Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
        }
        return x.modxk(m);
    }
    Poly pow(int k, int m) const {
        int i = 0;
        while (i < size() && a[i].val() == 0) {
            i ++;
        }
        if (i == size() || 1LL * i * k >= m) {
            return Poly(vector<Z>(m));
        }
        Z v = a[i];
        auto f = divxk(i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
    }
    Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((mod + 1) / 2);
        }
        return x.modxk(m);
    }
    Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        reverse(b.a.begin(), b.a.end());
        return ((*this) * b).divxk(n - 1);
    }
};
vector<Z> fact, infact, f;
Poly bell;
void init(int n) {
    fact.resize(n + 1), infact.resize(n + 1), f.resize(n + 1);
    fact[0] = infact[0] = 1;
    for (int i = 1; i <= n; i ++) {
        fact[i] = fact[i - 1] * i;
    }
    infact[n] = fact[n].inv();
    for (int i = n; i; i --) {
        infact[i - 1] = infact[i] * i;
    }
    for (int i = 1; i <= n; i ++) {
        f[i] = infact[i];
    }
    bell = Poly(f).exp(n + 1);
    for (int i = 1; i <= n; i ++) {
    	bell[i] *= fact[i];
    }
}
void solve() {
	int n;
	cin >> n;
	Z res;
	for (int i = 0; i <= n; i ++) {
		int x;
		cin >> x;
		res += bell[i] * x;
	}
	cout << res << "\n";
}
signed main() {
    init(1e5);
    cin.tie(0) -> sync_with_stdio(0);
    int T;
    cin >> T;
    while (T --) {
        solve();
    }
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 2021年江西省大学生程序设计竞赛是一项针对大学生的编程竞赛活动。该竞赛旨在提高大学生的编程能力和创新思维,促进计算机科学技术的发展和应用。竞赛内容包括算法设计、程序实现、据结构等方面,参赛选手需要在规定时间内完成指定的编程任务。这是一项非常有挑战性和有意义的竞赛,对于提高大学生的编程水平和实践能力有很大的帮助。 ### 回答2: 2021年3月14日,江西省大学生程序设计竞赛(ICPC)在江西师范大学举行。本次比赛由江西省计算机学会主办,吉林大学博爱学院赞助,共有15支队伍参赛,此次比赛的主要目的是提高学生们的程序设计与算法能力,同时为江西省选出优秀的程序设计人才。 比赛采用ACM国际竞赛的形式,共有12个题目,考察了参赛选手在算法设计、程序实现、据结构、编程能力等方面的综合素质。比赛时间长达5个小时,选手需要在规定时间内完成尽可能多的题目,并在保证正确性的同时尽量节省时间。 2019年江苏省大学生程序设计竞赛的比赛题分别从算法设计基础、计算几何、动态规划、搜索、据结构等方面出题,难度适中。所有参赛队伍均在赛场上充分展示了自己的才华和程序设计能力,赛场上紧张的气氛、激烈的角逐使得比赛更加刺激和有趣。 此次比赛从选拔、组织、管理等方面是非常成功的,既展示了江西省大学生程序设计的风采,也为江西省和国家培养了更多的优秀程序设计人才。希望在未来的竞赛中,江西省程序设计的水平能够更上一层楼,培养更多的优秀程序设计人才。 ### 回答3: 2021年江西省大学生程序设计竞赛于2021年11月7日在南昌大学体育馆举行,来自江西省内的30多所高校的近500支队伍参赛。本次比赛分为省赛和校内赛两个阶段,对参赛队伍进行初步筛选和终极评选。 比赛分为解决8道问题的组成员和4道问题的单人组成员两部分,涵盖了计算几何、动态规划、图论、计算几何等多个领域,难度较高。比赛中,每个队伍有5个小时的时间解决问题,只能在计算机上编写代码解决问题,考验了参赛者的编程实力和团队协作能力。 比赛期间,裁判们在场内设立了各种问题的试题,比如“手工奶酪”、“最大独立集”、“调色板”等,每个问题都要求参赛者在规定时间内精确解决。裁判们在以上操作的基础上,继续引入了随机性、收缩性和对称性等要素,使比赛题目更具挑战性。 本次比赛的成功举办,标志着江西省程序设计竞赛赛事的正式起航,并为江西省内高校的程序设计爱好者提供了一个互相交流、共同提高的平台。同时,也为将来江西省大学生程序设计竞赛的举办打下了坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值