论文笔记: 多标签学习 BP-MLL

摘要: 分享对论文的理解. 原文见 Zhang, M.-L., & Zhou, Z.-H. (2006). Multi-label neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering, 18, 1338–1351.

1. 论文贡献

The first multilabel neural network algorithm.
多标签学习的第一个神经网络算法.

2. 主要思想

The labels belonging to an instance should be ranked higher than those not belonging to that instance.
例: 如果图片里面有猫但没狗, 则猫对应的预测值应该比狗的大.
更实际的例子: 对猫这个标签的预测值为 0.6, 对狗为 0.3, 则惩罚较小 (机器学习里面一般惩罚值都大于 0); 否则惩罚很大.
进一步解读: 成对的比较.

3. 符号系统

符号含义说明
X = R d \mathcal{X} = \mathbb{R}^d X=Rd d d d 维特征空间
Y = { 1 , 2 , … , Q } \mathcal{Y} = \{1, 2, \dots, Q\} Y={1,2,,Q}标签空间使用整数集合而不是 { − 1 , 1 } d \{-1, 1\}^d {1,1}d
h : X → 2 Y h: \mathcal{X} \to 2^\mathcal{Y} h:X2Y分类器使用幂集
f : X × Y → R f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} f:X×YR回归器为每个对象的每个标签预测一个概率

说明:

  1. 从回归器到分类器, 只需要增加一个阈值.
  2. 有些 (更为流行的) MLL 评价指标并不需要输出 + 1 +1 +1 − 1 -1 1, 而是标签的排序.

4. 算法核心

图 1. 神经网络结构

E = ∑ i = 1 m E i = ∑ i = 1 m 1 ∣ Y i ∣ ∣ Y i ‾ ∣ ∑ ( k , l ) ∈ Y i × Y i ‾ exp ⁡ ( − ( c k i − c l i ) ) , (1) E = \sum_{i=1}^m E_i = \sum_{i=1}^m \frac{1}{\vert Y_i \vert \vert \overline{Y_i} \vert} \sum_{(k, l) \in Y_i \times \overline{Y_i}} \exp(-(c_k^i - c_l^i)), \tag{1} E=i=1mEi=i=1mYiYi1(k,l)Yi×Yiexp((ckicli)),(1)
其中:

  • Y i ‾ = Y ∖ Y i \overline{Y_i} = \mathcal{Y} \setminus Y_i Yi=YYi, 即 Y i Y_i Yi 的补集.
  • c k i = f ( x i , k ) c_k^i = f(\mathbf{x_i}, k) cki=f(xi,k) 是神经网络对于 x i \mathbf{x_i} xi k k k 个标签的预测值.
  • 第一个求和是针对所有对象.
  • 第二个求和本质上是双重循环, 如 ∣ Y i ∣ = 10 \vert Y_i \vert = 10 Yi=10, Q = 100 Q = 100 Q=100, 则需要求 10 × 90 = 900 10 \times 90 = 900 10×90=900 对.
  • exp ⁡ \exp exp 的参数小于 0 时, 损失较小, 否则相当大.

5. 小结

  • 成对比较的思想.
  • 一篇机器学习的论文, 一个损失函数就够了.
  • 可以把 exp ⁡ \exp exp 替换成另外的单增函数, 或者改变网络结构, 以此来进行小的创新.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值