[论文阅读] PointSeg: Real-Time Semantic Segmentation Based on 3D LiDAR Point Cloud

paper 原论文的链接
code: 源代码链接

67.4 (car) 19.2(ped) 32.7(cyclist)|90 fps/GPU

1. 主要思想

通过什么方式,解决了什么问题

在SqueezeSeg的基础上,利用PSPNet思想进行网络结构的创新,使得即快有准。

2. 具体方法

说明怎么解决的,具体设计是什么, 有什么启发性思考(作者的创新点)

2.1 数据投影

和SqueezeSeg一样

2.2 网络结构

1. FireLayer
包括卷积和反卷积,和SqueezeSeg中的一样

2. Enlargement Layer
为了减小赤化层导致的位置信息损失, 用空洞卷积组成类似ASPP进行卷积操作;
在这里插入图片描述

  • 使用 1x1卷积和global average layer 作为concatenate后面的层,将fmaps进行压缩

3. squeeze reweighting layer
在这里插入图片描述
该模块的一些说明-也就是个通道注意力机制:

  • X是前层输出,要进行sigmoid激活

  • Y是X激活后,与通道注意力机制的输出进行融合的结果,Y作为模块输出
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 此外论文的下采样仍然在宽度上,

  • 这些模块的使用位置解释如下:
    在这里插入图片描述

3. 实验支撑

记录一些关键实验的结论分析,具有启发性的实验和结论

在这里插入图片描述
速度对比:
在这里插入图片描述

4. 总结启示

针对中心思想和实验结论的总结和扩展思考
扩展思考 : 也就是用自己已有的知识或者自己的“土话”,重新理解paper(费曼学习法的精髓-便于记忆和举一反三的应用)

  • squeeze reweighting layer模块设计
  • 采用了空洞卷积

5. 相关文献

主要的比较贴近的文献,关键性文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值