# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
size = 30
##计算欧式距离
def distEuclid(x,y):
return np.sqrt(np.sum((x-y)**2))
##随机产生n个dim维度的数据 (这里为了展示结果 dim取2或者3)
def genDataset(n,dim):
data = []
while len(data)<n:
p = np.around(np.random.rand(dim)*size,decimals=2)
data.append(p)
return data
##判断两点是否在范围内
def isNeighbor(x,y,eps):
return distEuclid(x,y)<=eps
##获取某一点邻域内的点
def getSeedPos(pos,data,eps):
seed = []
for p in range(len(data)):
if isNeighbor(data[p],data[pos],eps):
seed.append(p)
return seed
##获取核心点列表
def getCorePointsPos(data,eps,minpts):
cpoints=[]
for pos in range(len(data)):
if len(getSeedPos(pos,data,eps))>=minpts:
cpoints.append(pos)
return cpoints
##分类
def getCluster(data,eps,minpts):
corePos = getCorePointsPos(data,eps,minpts)
unvisited =list(range(len(data)))
cluster = {}
num = 0
for pos in corePos:
if pos not in unvisited:
continue
clusterpoint = []
clusterpoint.append(pos)
seedlist = getSeedPos(pos,data,eps)
unvisited.remove(pos)
while seedlist:
p = seedlist.pop(0)
if p not in unvisited:
continue
unvisited.remove(p)
clusterpoint.append(p)
if p in corePos:
seedlist.extend(getSeedPos(p,data,eps))
cluster[num] = clusterpoint
num+=1
cluster["noisy"]=unvisited
return cluster
##展示结果 各类簇使用不同的颜色 中心点使用X表示
def Show(data,cluster):
num,dim = data.shape
color = ['r','g','c','y','m','b','pink','maroon','tomato','peru','lawngreen','gold','aqua','dodgerblue']
##二维图
if dim==2:
for i in cluster:
pos = cluster[i]
if i=="noisy":
for p in pos:
plt.plot(data[p,0],data[p,1],'o',c='k')
else:
for p in pos:
plt.plot(data[p,0],data[p,1],'o',c=color[i])
##三维图
elif dim==3:
ax = plt.subplot(111,projection ='3d')
for i in cluster:
pos = cluster[i]
if i=="noisy":
for p in pos:
ax.scatter(data[p,0],data[p,1],data[p,2],c='black')
else:
for p in pos:
ax.scatter(data[p,0],data[p,1],data[p,2],c=color[i])
plt.show()
data = np.array(genDataset(80,3))
print(type(data))
print(data.shape)
cl = getCluster(data,6,4)
Show(data,cl)
三维点云中DBSCAN的使用
最新推荐文章于 2024-07-15 00:00:00 发布