信号处理(一)——理解AD转换时的信号采样与保持

本文详细介绍了AD转换过程中的信号采样,涉及数学模型、物理过程以及理想与非理想状态下的工作原理。通过《Introduction to Signal Processing》的理论,探讨了抽样信号、冲激函数序列及其在连续和离散时间下的表达,以及采样保持器如何确保信号转换的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:对AD转换过程中的数学原理加以理解,讲述了原始模拟信号的抽样信号以及抽样序列,将时间tn统一起来,并对采样的物理过程加以解释。

声明:本文章参考了《Introduction to Signal Processing》一书, 作者:Sophocles J.Orfanidis ,特此声明。
欢迎大家批评指正!!

理解AD转换时的信号采样与保持

AD转换器的内部原理如图1所示。包括两个部分:采样保持器(sampler)和量化器(quantizer)。模拟信号x_{a}(t)经过采样保持器后得到采样信号x(nT),再经过量化器(A->D转换)得到x_{Q}(nT),每个采样点是用B位来表示数字信号。

图1  AD转换器内部结构

 采样保持器内部电路见图1,均匀采样时,开关每隔时间T闭合一次,理想状态下,闭合时间无限短,连续的闭合过程可以等效为一个冲激函数序列\delta _{T}(t)。开关闭合后,信号(可以理解为理想的电压源)快速给电容充电或放电(当输入的电压值比上一个采样值小的时候,就是放电),在电容上就形成了与输入信号值一致的电压信号,这个值会保持至下一次采样时刻,在模拟转数字的过程中这个电压值需要保持不变,以保证AD能转换为正确的结果(因为AD转换需要时间)。当然在理想的状态下,电容充放电的时间都是无限短的,输入信号源可以认为内阻为0。

    如果从连续时间t角度说,采样过程可以建模为输入信号与\delta _{T}(t)的乘积,经过采样以后在A点得到抽样信号如下,注意其为t的函数:

\hat{x}_{a}(t)=x_{a}(t)\delta _{T}(t)=\sum_{n=-\infty }^{\infty }x_{a}(t)\delta (t-nT)=\sum_{n=-\infty }^{\infty }x_{a}(nT)\delta (t-nT)

其本质上是一系列的冲激函数,其在每个采样时刻的幅度都为无限值 ,但其总的能量是有限的,就等于此时的输入信号的幅度。

如果从离散时间角度来说,A点得到的是一个离散时间的抽样序列,表达式如下,注意其为n的函数:

x(n)=x_{a}(nT)=x_{a}(t)|_{t=nT}

两者之间可以有如下联系:

{\color{Black} L(\hat{x}_{a}(t))=\int_{-\infty}^{\infty}\sum_{n=-\infty }^{\infty }x_{a}(nT)\delta (t-nT) e^{-st}dt=\sum_{n=-\infty }^{\infty }x_{a}(nT)e^{-snT} =\sum_{n=-\infty }^{\infty }x(n)z^{-n}=Z(x(n))}  

上式中,z=e^{sT}x(n)=x_{a}(nT)

即当z=e^{sT}时,抽样序列x(n)的z变换,等于其理想抽样信号\hat{x}_{a}(t)的拉普拉斯变换,这句话中的“其”,说明两者是同宗的,都源于{x}_{a}(t)

最后,再重点说一下,如果从物理过程理解采样:如图2所示,这里可以将信号\hat{x}_{a}(t)想象为电流信号i(t),在采样时间到后,开关闭合,输入模拟信号等效的理想电压源在无限短的时间,以无限大的电流,给电容充电或放电,强迫电容达到与输入信号相同的电压值,描述这个过程最恰当的数学模型就是冲激函数序列。可以将x(n)=x_{a}(nT)想象为A点的电压值,这个电压值一瞬间完成,就是nT时刻的函数值。这样就好理解了,当然这一切,都是在理想状态下完成的,非理想状态思路也是一样的。

图2  理解采样的物理过程

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值