摘要:对AD转换过程中的数学原理加以理解,讲述了原始模拟信号的抽样信号以及抽样序列,将时间和
统一起来,并对采样的物理过程加以解释。
声明:本文章参考了《Introduction to Signal Processing》一书, 作者:Sophocles J.Orfanidis ,特此声明。
欢迎大家批评指正!!
理解AD转换时的信号采样与保持
AD转换器的内部原理如图1所示。包括两个部分:采样保持器(sampler)和量化器(quantizer)。模拟信号经过采样保持器后得到采样信号
,再经过量化器(A->D转换)得到
,每个采样点是用
位来表示数字信号。

采样保持器内部电路见图1,均匀采样时,开关每隔时间闭合一次,理想状态下,闭合时间无限短,连续的闭合过程可以等效为一个冲激函数序列
。开关闭合后,信号(可以理解为理想的电压源)快速给电容充电或放电(当输入的电压值比上一个采样值小的时候,就是放电),在电容上就形成了与输入信号值一致的电压信号,这个值会保持至下一次采样时刻,在模拟转数字的过程中这个电压值需要保持不变,以保证AD能转换为正确的结果(因为AD转换需要时间)。当然在理想的状态下,电容充放电的时间都是无限短的,输入信号源可以认为内阻为0。
如果从连续时间角度说,采样过程可以建模为输入信号与
的乘积,经过采样以后在A点得到抽样信号如下,注意其为
的函数:
其本质上是一系列的冲激函数,其在每个采样时刻的幅度都为无限值 ,但其总的能量是有限的,就等于此时的输入信号的幅度。
如果从离散时间角度来说,A点得到的是一个离散时间的抽样序列,表达式如下,注意其为的函数:
两者之间可以有如下联系:
![]()
上式中,
,
即当
时,抽样序列
的z变换,等于其理想抽样信号
的拉普拉斯变换,这句话中的“其”,说明两者是同宗的,都源于
最后,再重点说一下,如果从物理过程理解采样:如图2所示,这里可以将信号
想象为电流信号
,在采样时间到后,开关闭合,输入模拟信号等效的理想电压源在无限短的时间,以无限大的电流,给电容充电或放电,强迫电容达到与输入信号相同的电压值,描述这个过程最恰当的数学模型就是冲激函数序列。可以将
想象为A点的电压值,这个电压值一瞬间完成,就是
时刻的函数值。这样就好理解了,当然这一切,都是在理想状态下完成的,非理想状态思路也是一样的。
![]()
图2 理解采样的物理过程