libtorch部署1:模型训练和转换

前面已经研究过tensorflow,onnx的模型部署方案,这篇就来记录一下pyTorch模型的C++部署方案。

对于pyTorch,我的基本应用思路是:

  • 采用pytorch进行训练模型,测试模型
  • 用libtorch实现前向传播,推理部署

注意事项写在前面:

  1. 注意 libtorch和VC版本对应。
    比如libtorch1.4对应的VC2015,libtorch1.6对应的VC2017。

  2. 注意libtorch和pyTorch版本的对应。尽量要使用同一个版本号的。
    比如我用的就是pyTorch1.4版本和libTorch1.4版本

  3. 注意libtorch/pyTorch和Cuda的版本对应。
    比如cuda10/10.1可以通用,Cuda10.2,cuda11.0就不能通用

基本环境

  • 操作系统:Win10
  • 编译器:VS 2015
  • Cuda版本:CUDA10+cuDNN7.6.5
  • Python版本:Anaconda3-5.2.0-Windows-x86_64(对应python3.6.5)
  • Pytorch版本:1.4.0
  • Libtorch版本:1.4.0

说明:
对于Anaconda、VC、CUDA/cuDNN这些基础环境的安装,比较简单,就直接略过了。

1.pyTorch安装

Torch历史版本下载
https://pytorch.org/get-started/previous-versions/

//CUDA 10.0/10.1

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch

安装完成后直接测试:

python
import torch
print(torch.__version__)
print (torch.cuda.is_available())

能正常输出版本号和支持cuda,这表示安装成功。
在这里插入图片描述

2.训练模型

这里可以直接通过torchvision直接下载一个预处理模型,也可以自己训练。
如果是有现成的预处理模型,就跳到下一步模型转换。

这里为了方便记录流程,我采用的训练模型。
下面是mnist手写字体识别的模型训练:

import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import PIL

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(F.max_pool2d(x, 2))
        x = self.conv2(x)
        x = F.relu(F.max_pool2d(self.conv2_drop(x), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
            pred = output.max(1, keepdim=True)[1]  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))


def main():
    # 用于训练的超参数设置
    parser = argparse.ArgumentParser(description='PyTorch MNIST样例')
    parser.add_argument('--batch-size', type=int, default=64,
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000,
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10,
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.01,
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5,
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1,
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10,
                        help='how many batches to wait before logging training status')
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()  # 判断是否使用GPU训练
    print(use_cuda)
    torch.manual_seed(args.seed)  # 固定住随机种子,使训练结果可复现

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 8, 'pin_memory': True} if use_cuda else {}
    # 加载训练数据
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args.batch_size, shuffle=True, **kwargs)
    # 加载测试数据
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=args.test_batch_size, shuffle=True, **kwargs)

    model = Net().to(device)
    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(args, model, device, test_loader)

    torch.save(model, "model.pth")  # 保存模型参数


if __name__ == '__main__':
    import time

    start = time.time()
    main()
    end = time.time()
    running_time = end - start
    print('time cost : %.5f 秒' % running_time)

3.模型测试

训练完成后,进行一个简单测试
我们随便找了一张图片
在这里插入图片描述
测试代码如下

import torch
import cv2
from torchvision import transforms
from PIL import Image

if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = torch.load('model.pth')  # 加载模型
    model = model.to(device)
    model.eval()  # 把模型转为test模式

    img = cv2.imread("img.jpg", 0)  # 读取要预测的灰度图片
    img = Image.fromarray(img)
    trans = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])

    img = trans(img)
    img = img.unsqueeze(0)  # 图片扩展多一维,[batch_size,通道,长,宽],此时batch_size=1
    img = img.to(device)
    output = model(img)
    pred = output.max(1, keepdim=True)[1]
    pred = torch.squeeze(pred)
    print('检测结果为:%d' % (pred.cpu().numpy()))

如果出现

AttributeError: Can’t get attribute ‘Net’ on <module ‘main’ from
‘test.py’>

那么就将训练脚本里面的Net类拷贝到test.py里面就可以了

执行python test.py 后输出结果可以看到模型预测是正常的。

检测结果为:2

4.转换模型

pytorch的模型是没法直接用libtorch加载的,必须要进行序列化后输出。
这个转换过程就是找一张图片,直接foward一遍,然后用torch.jit.trace 保存下来就可以了。

import torch
import torch.nn as nn
import cv2
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(F.max_pool2d(x, 2))
        x = self.conv2(x)
        x = F.relu(F.max_pool2d(self.conv2_drop(x), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

if __name__ == '__main__':
    # 使用cpu进行推理,也可选cuda,这里选的哪种,libtorch里面也只能加载哪种
    device = torch.device('cpu')  
    model = torch.load('model.pth')  # 加载模型
    model = model.to(device)
    model.eval()  # 把模型转为test模式

    img = cv2.imread("img.jpg", 0)  # 读取要预测的灰度图片
    img = Image.fromarray(img)
    trans = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])

    img = trans(img)
    img = img.unsqueeze(0)  # 图片扩展多一维,[batch_size,通道,长,宽]
    img = img.to(device)
    traced_net = torch.jit.trace(model, img)
    traced_net.save("model_cpu.pt")

    print("模型序列化导出成功")

执行转换后,可以得到

model_cpu.pt

这样,整个模型的训练转换过程就完成了,下一篇我们就用libtorch加载这个模型,并进行验证。

5.补充内容DataParallel

有的时候我们服务器上不止一个GPU,这时候,可能就会用到nn.DataParallel函数,它可以让多个GPU并行处理。这种情况下,进行序列化输出模型就有一点不同了。

序列化:

device = torch.device('cuda')
model = get_model(args_in)
model = torch.nn.DataParallel(model, device_ids=[0])
model.load_state_dict(torch.load(args_in.test_model_path))
model.to(device)
# use evaluation mode to ignore dropout, etc
model.eval()

# The tracing input need not to be the same size as the forward case.
example = torch.rand(1, 3, 256, 256).to(device)

# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model.module, example)

traced_script_module.save("traced_model.pt")

注意事项:
1.并行化当然是GPU上的,需要将tensor通过to(device)或者.cuda()转到GPU上。
2.利用DataParallel训练的模型,需要在trace时使用 model.module,而不是通常的model

6.Tracing方法

libtorch不依赖于python,但python训练的模型,需要转换为script model才能由libtorch加载,并进行推理。在这一步官网提供了两种方法:

TraceScript

上面提到的都是Tracing,这种比较简单,对我来说也够用了。缺点是适用于模型没有分支的情况。

如果模型较复杂,forward中有分支,那么就需要用通过torch.jit.script编译模块,将其转换为ScriptModule。比如:

class MyModule(torch.nn.Module):
    def __init__(self, N, M):
        super(MyModule, self).__init__()
        self.weight = torch.nn.Parameter(torch.rand(N, M))

    def forward(self, input):
        if input.sum() > 0:
          output = self.weight.mv(input)
        else:
          output = self.weight + input
        return output

my_module = MyModule(10,20)
sm = torch.jit.script(my_module)

官方文档

https://pytorch.org/tutorials/advanced/cpp_export.html

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值