【网络流】最大流:Drainage Ditches【EK模板】

# include<stdio.h>
# include<string.h>
# include<queue>
using namespace std;


# define N 203 //点数
# define M 203 //边数


# define INF 99999999


int n,m; //点数和边数
int cap[N][N]; //保存每个边的容量
int pathPreNode[N]; //保存增广路径上,每个节点的前一个节点


//BFS寻找增广路径(本质就是在图中找一个从start到end的路径)
int BFS(int start, int end) 
{
	memset(pathPreNode,-1,sizeof(pathPreNode));
	pathPreNode[start]=start; //起始标不标记都无所谓
	
	int curNode,i,preNode;
	int pathMinFlow=INF; //增广路径上所有边中容量最小的值
	queue<int> q;
	q.push(start);
	while(!q.empty())
	{
		curNode=q.front();
		q.pop(); //注意,别忘
		if(curNode==end) //找到了增广路径
		{
			for(curNode=end;curNode!=start;curNode=preNode) //构造剩余图
			{
				preNode=pathPreNode[curNode];
				pathMinFlow= pathMinFlow<=cap[preNode][curNode]? pathMinFlow: cap[preNode][curNode]; //更新增广路径上de最小流量
			}
			return pathMinFlow;
		}
		for(i=1;i<=n;i++)
		{
			//如果节点i没被访问过,且剩余图中edge(curNode,i)还有容量,那么这些点都是BFS可以访问的候选节点
			if(pathPreNode[i]==-1 && cap[curNode][i]>0)
			{
				q.push(i); //队列中加入候选节点
				pathPreNode[i]=curNode; //记录前一个节点
				//pathMinFlow= pathMinFlow<=cap[curNode][i]? pathMinFlow: cap[curNode][i]; //更新增广路径上de最小流量
				//注意,这里找到的是带有回溯的最小流量,实际上在执行过程中,某个路径并能到达终点end,所以这里计算的pathMinFlow是有问题的!
				//但是,为什么有些题目这样写还能刷过去呢?因为正确的pathMinFlow'【大于】这里计算的pathMinFlow,我们想要每次增广pathMinFlow',
				//而不是pathMinFlow,如果每次只增广pathMinFlow,只不过是【需要增广的次数增加了,而不影响最终结果】,所以,如果测试数据比较小,
				//某些题目可以刷过,但是如果测试数据比较大,这种每次只增广一点点流量(pathMinFlow)的办法会使EK函数的执行次数大大增加,进而超时!
				//分析比较USACO 93【Drainage Ditches】和Croatia OI 2002 Final Exam - First day【PIGS】就明白了
				//【正确的做法】是,将计算pathMinFlow的代码放在找到增广路径之后,即,在上面的if语句中添加for循环!
			}
		}
	}
	return -1;
}


int EK(int start, int end)
{
	int oneFlow,maxFlow=0,curNode,preNode;
	while(true)
	{
		oneFlow=BFS(start,end); //BFS寻找增广路径
		if(oneFlow==-1) //找不到增广路径
		{
			break;
		}
		else
		{
			maxFlow+=oneFlow;
			for(curNode=end;curNode!=start;curNode=preNode) //构造剩余图
			{
				preNode=pathPreNode[curNode];
				cap[preNode][curNode]-=oneFlow; //正向边减
				cap[curNode][preNode]+=oneFlow; //反向边加
			}
		}
	}
	return maxFlow;
}


int main()
{
	int s,e,c,i;
	while(~scanf("%d%d",&m,&n)) //先输入边,再输入点(注意题意)
	{
		memset(cap,0,sizeof(cap)); //注意,不要忘!
		for(i=1;i<=m;i++)
		{
			scanf("%d%d%d",&s,&e,&c);
			cap[s][e]+=c; //防止重边
		}
		printf("%d\n",EK(1,n));
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值