# include<stdio.h>
# include<string.h>
# include<queue>
using namespace std;
# define N 203 //点数
# define M 203 //边数
# define INF 99999999
int n,m; //点数和边数
int cap[N][N]; //保存每个边的容量
int pathPreNode[N]; //保存增广路径上,每个节点的前一个节点
//BFS寻找增广路径(本质就是在图中找一个从start到end的路径)
int BFS(int start, int end)
{
memset(pathPreNode,-1,sizeof(pathPreNode));
pathPreNode[start]=start; //起始标不标记都无所谓
int curNode,i,preNode;
int pathMinFlow=INF; //增广路径上所有边中容量最小的值
queue<int> q;
q.push(start);
while(!q.empty())
{
curNode=q.front();
q.pop(); //注意,别忘
if(curNode==end) //找到了增广路径
{
for(curNode=end;curNode!=start;curNode=preNode) //构造剩余图
{
preNode=pathPreNode[curNode];
pathMinFlow= pathMinFlow<=cap[preNode][curNode]? pathMinFlow: cap[preNode][curNode]; //更新增广路径上de最小流量
}
return pathMinFlow;
}
for(i=1;i<=n;i++)
{
//如果节点i没被访问过,且剩余图中edge(curNode,i)还有容量,那么这些点都是BFS可以访问的候选节点
if(pathPreNode[i]==-1 && cap[curNode][i]>0)
{
q.push(i); //队列中加入候选节点
pathPreNode[i]=curNode; //记录前一个节点
//pathMinFlow= pathMinFlow<=cap[curNode][i]? pathMinFlow: cap[curNode][i]; //更新增广路径上de最小流量
//注意,这里找到的是带有回溯的最小流量,实际上在执行过程中,某个路径并能到达终点end,所以这里计算的pathMinFlow是有问题的!
//但是,为什么有些题目这样写还能刷过去呢?因为正确的pathMinFlow'【大于】这里计算的pathMinFlow,我们想要每次增广pathMinFlow',
//而不是pathMinFlow,如果每次只增广pathMinFlow,只不过是【需要增广的次数增加了,而不影响最终结果】,所以,如果测试数据比较小,
//某些题目可以刷过,但是如果测试数据比较大,这种每次只增广一点点流量(pathMinFlow)的办法会使EK函数的执行次数大大增加,进而超时!
//分析比较USACO 93【Drainage Ditches】和Croatia OI 2002 Final Exam - First day【PIGS】就明白了
//【正确的做法】是,将计算pathMinFlow的代码放在找到增广路径之后,即,在上面的if语句中添加for循环!
}
}
}
return -1;
}
int EK(int start, int end)
{
int oneFlow,maxFlow=0,curNode,preNode;
while(true)
{
oneFlow=BFS(start,end); //BFS寻找增广路径
if(oneFlow==-1) //找不到增广路径
{
break;
}
else
{
maxFlow+=oneFlow;
for(curNode=end;curNode!=start;curNode=preNode) //构造剩余图
{
preNode=pathPreNode[curNode];
cap[preNode][curNode]-=oneFlow; //正向边减
cap[curNode][preNode]+=oneFlow; //反向边加
}
}
}
return maxFlow;
}
int main()
{
int s,e,c,i;
while(~scanf("%d%d",&m,&n)) //先输入边,再输入点(注意题意)
{
memset(cap,0,sizeof(cap)); //注意,不要忘!
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&s,&e,&c);
cap[s][e]+=c; //防止重边
}
printf("%d\n",EK(1,n));
}
return 0;
}
【网络流】最大流:Drainage Ditches【EK模板】
最新推荐文章于 2020-01-14 21:07:57 发布