reinforcement learning,增强学习:Policy Gradient

本文深入探讨了强化学习中的Policy Gradient方法,包括Finite Difference Policy Gradient、Monte-Carlo Policy Gradient和Actor-Critic Policy Gradient。强调了Policy-Based RL在高维连续动作空间的优势以及可能面临的局部最优和高方差问题。介绍了Actor-Critic方法如何通过减少方差和避免偏差来改进收敛性。
摘要由CSDN通过智能技术生成



上节课和本节课内容


具体的:

 Finite Difference Policy Gradient

 Monte-Carlo Policy Gradient

Actor-Critic Policy Gradient

区别和联系:

 

Advantages of Policy-Based RL:
Better convergence properties
Effective in high-dimensional or continuous action spaces
Can learn stochastic policies(课件中有个Example: Aliased Gridworld,很好理解


Disadvantages of Policy-Based RL :
Typically converge to a local rather than global optimum
Evaluating a policy is typically inefficient and high variance
 


Policy-Gradient RL 问题的数学化描述:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值