机器学习|DBSCAN 算法的数学原理及代码解析
引言
聚类是机器学习领域中一项重要的任务,它可以将数据集中相似的样本归为一类。DBSCAN(Density-Based Spatial Clustering of Applications with Noise)
是一种是一种经典的密度聚类算法,它能够有效地发现任意形状的聚类簇,并且可以识别出噪声点。在本文中,我们将深入探讨DBSCAN
算法的数学原理,并提供Python
示例代码帮助读者更好地理解和应用该算法。
DBSCAN数学原理
基本思想
DBSCAN
算法通过定义样本点的邻域密度来划分簇,具体思想如下:
- 若一个样本点的邻域内包含足够数量的样本点,则将该点作为核心点,并以该点为中心形成一个新的簇。
- 若一个样本点的邻域内不包含足够数量的样本点,但存在某个核心点的邻域包含该点,则将该点归入该核心点所属的簇。
- 若一个样本点既不是核心点,也不能归入其他簇,则将其作为噪声点。
数学定义
DBSCAN
算法通过计算数据样本之间的密度来完成聚类任务。在介绍具体数学原理之前,我们先定义几个重要概念:
距离度量
:通常使用欧氏距离
或曼哈顿距离
来度量样本点之间的距离。
领域半径
:表示样本点在距离度量上的阈值,用于确定一个样本点的邻域
。
核心对象(Core Object)
:如果一个样本点周围的密度达到一定阈值(eps),则该样本点称为核心对象。
直接密度可达(Directly Density-Reachable)
:如果点p
在点q
的ε-
邻域内,并且点q
是核心对象,则点p
从点q
直接密度可达。
密度可达(Density-Reachable)
:对于点p
和q
,如果存在样本点序列p1, p2, ..., pn
,p1=p
,pn=q
,并且pi+1
从pi<