透视变换的原理和矩阵求解请参见前一篇《透视变换 Perspective Transformation》。在OpenCV中也实现了透视变换的公式求解和变换函数。
求解变换公式的函数:
Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[])
输入原始图像和变换之后的图像的对应4个点,便可以得到变换矩阵。之后用求解得到的矩阵输入perspectiveTransform便可以对一组点进行变换:
void perspectiveTransform(InputArray src, OutputArray dst, InputArray m)
注意这里src和dst的输入并不是图像,而是图像对应的坐标。应用前一篇的例子,做个相反的变换:
-
int main( )
-
{
-
Mat img=imread(
"boy.png");
-
int img_height = img.rows;
-
int img_width = img.cols;
-
vector<Point2f> corners(
4);
-
corners[
0] = Point2f(
0,
0);
-
corners[
1] = Point2f(img_width
-1,
0);
-
corners[
2] = Point2f(
0,img_height
-1);
-
corners[
3] = Point2f(img_width
-1,img_height
-1);
-
vector<Point2f> corners_trans(
4);
-
corners_trans[
0] = Point2f(
150,
250);
-
corners_trans[
1] = Point2f(
771,
0);
-
corners_trans[
2] = Point2f(
0,img_height
-1);
-
corners_trans[
3] = Point2f(
650,img_height
-1);
-
-
Mat transform = getPerspectiveTransform(corners,corners_trans);
-
cout<<transform<<
endl;
-
vector<Point2f> ponits, points_trans;
-
for(
int i=
0;i<img_height;i++){
-
for(
int j=
0;j<img_width;j++){
-
ponits.push_back(Point2f(j,i));
-
}
-
}
-
-
perspectiveTransform( ponits, points_trans, transform);
-
Mat img_trans = Mat::zeros(img_height,img_width,CV_8UC3);
-
int count =
0;
-
for(
int i=
0;i<img_height;i++){
-
uchar* p = img.ptr<uchar>(i);
-
for(
int j=
0;j<img_width;j++){
-
int y = points_trans[count].y;
-
int x = points_trans[count].x;
-
uchar* t = img_trans.ptr<uchar>(y);
-
t[x*
3] = p[j*
3];
-
t[x*
3+
1] = p[j*
3+
1];
-
t[x*
3+
2] = p[j*
3+
2];
-
count++;
-
}
-
}
-
imwrite(
"boy_trans.png",img_trans);
-
-
return
0;
-
}
得到变换之后的图片:
注意这种将原图变换到对应图像上的方式会有一些没有被填充的点,也就是右图中黑色的小点。解决这种问题一是用差值的方式,再一种比较简单就是不用原图的点变换后对应找新图的坐标,而是直接在新图上找反向变换原图的点。说起来有点绕口,具体见前一篇《透视变换 Perspective Transformation》的代码应该就能懂啦。
除了getPerspectiveTransform()函数,OpenCV还提供了findHomography()的函数,不是用点来找,而是直接用透视平面来找变换公式。这个函数在特征匹配的经典例子中有用到,也非常直观:
-
int main( int argc, char** argv )
-
{
-
Mat img_object = imread( argv[
1], IMREAD_GRAYSCALE );
-
Mat img_scene = imread( argv[
2], IMREAD_GRAYSCALE );
-
if( !img_object.data || !img_scene.data )
-
{
std::
cout<<
" --(!) Error reading images " <<
std::
endl;
return
-1; }
-
-
//-- Step 1: Detect the keypoints using SURF Detector
-
int minHessian =
400;
-
SurfFeatureDetector detector( minHessian );
-
std::
vector<KeyPoint> keypoints_object, keypoints_scene;
-
detector.detect( img_object, keypoints_object );
-
detector.detect( img_scene, keypoints_scene );
-
-
//-- Step 2: Calculate descriptors (feature vectors)
-
SurfDescriptorExtractor extractor;
-
Mat descriptors_object, descriptors_scene;
-
extractor.compute( img_object, keypoints_object, descriptors_object );
-
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
-
-
//-- Step 3: Matching descriptor vectors using FLANN matcher
-
FlannBasedMatcher matcher;
-
std::
vector< DMatch > matches;
-
matcher.match( descriptors_object, descriptors_scene, matches );
-
double max_dist =
0;
double min_dist =
100;
-
-
//-- Quick calculation of max and min distances between keypoints
-
for(
int i =
0; i < descriptors_object.rows; i++ )
-
{
double dist = matches[i].distance;
-
if( dist < min_dist ) min_dist = dist;
-
if( dist > max_dist ) max_dist = dist;
-
}
-
-
printf(
"-- Max dist : %f \n", max_dist );
-
printf(
"-- Min dist : %f \n", min_dist );
-
-
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
-
std::
vector< DMatch > good_matches;
-
-
for(
int i =
0; i < descriptors_object.rows; i++ )
-
{
if( matches[i].distance <
3*min_dist )
-
{ good_matches.push_back( matches[i]); }
-
}
-
-
Mat img_matches;
-
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
-
good_matches, img_matches, Scalar::all(
-1), Scalar::all(
-1),
-
vector<
char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
-
-
//-- Localize the object from img_1 in img_2
-
std::
vector<Point2f> obj;
-
std::
vector<Point2f> scene;
-
-
for(
size_t i =
0; i < good_matches.size(); i++ )
-
{
-
//-- Get the keypoints from the good matches
-
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
-
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
-
}
-
-
Mat H = findHomography( obj, scene, RANSAC );
-
-
//-- Get the corners from the image_1 ( the object to be "detected" )
-
std::
vector<Point2f> obj_corners(
4);
-
obj_corners[
0] = Point(
0,
0); obj_corners[
1] = Point( img_object.cols,
0 );
-
obj_corners[
2] = Point( img_object.cols, img_object.rows ); obj_corners[
3] = Point(
0, img_object.rows );
-
std::
vector<Point2f> scene_corners(
4);
-
perspectiveTransform( obj_corners, scene_corners, H);
-
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
-
Point2f offset( (float)img_object.cols, 0);
-
line( img_matches, scene_corners[
0] + offset, scene_corners[
1] + offset, Scalar(
0,
255,
0),
4 );
-
line( img_matches, scene_corners[
1] + offset, scene_corners[
2] + offset, Scalar(
0,
255,
0),
4 );
-
line( img_matches, scene_corners[
2] + offset, scene_corners[
3] + offset, Scalar(
0,
255,
0),
4 );
-
line( img_matches, scene_corners[
3] + offset, scene_corners[
0] + offset, Scalar(
0,
255,
0),
4 );
-
-
//-- Show detected matches
-
imshow(
"Good Matches & Object detection", img_matches );
-
waitKey(
0);
-
return
0;
-
}
代码运行效果:
findHomography()函数直接通过两个平面上相匹配的特征点求出变换公式,之后代码又对原图的四个边缘点进行变换,在右图上画出对应的矩形。这个图也很好地解释了所谓透视变换的“Viewing Plane”。