NTIRE 2025光场图像超分辨挑战赛正式开赛 | 验证平台已上线!

关注公众号,发现CV技术之美

光场图像超分辨挑战赛 (Light Field Image Super-Resolution Challenge)将作为NTIRE研讨会的一部分,与CVPR 2025一起举办。NTIRE全称New Trends in Image Restoration and Enhancement,是近年来图像复原领域最具影响力的一项全球性赛事。


大赛背景

随着相机制造技术的不断进步,光场成像技术日益普及,并广泛应用于手机、自动驾驶、机器人、VR/AR等领域。由于光场相机可以在不同视角记录场景图像,因此可以通过利用视角间的互补信息来提高图像的分辨率。光场图像超分辨旨在从低分辨率的光场图像中重建出高分辨率的光场图像。

我们联合NTIRE研讨会,为光场领域组织了一场以提高图像分辨率为重点的挑战赛,以突出光场图像超分辨面临的具体挑战和研究问题。这次挑战赛为研究人员提供了一个分享专业知识、提升算法性能的机会,旨在促进光场图像超分辨领域的发展。


大赛介绍

这次挑战赛的目的是从低分辨率(LR)光场图像中重建出高分辨率(HR)光场图像。在模型开发阶段,将发布训练集和验证集。参赛者可利用训练集进行模型训练,并将验证集上的超分辨结果提交至CodaLab服务器进行评估。在测试阶段,竞赛组织者将发布测试集。参赛者可利用训练好的模型对低分辨率测试图像进行超分辨,并提交超分辨后的图像,由组织者统一进行定量评估与排名。


赛道介绍

本届光场图像超分辨挑战赛共设经典轻量化大模型共三个赛道。

经典赛道

  • 链接:https://codalab.lisn.upsaclay.fr/competitions/21276

本赛道对模型参数量和计算量无要求,但是要求选手只能在指定训练集上开发模型,禁止使用预训练模型或使用训练集之外的数据训练模型;

轻量化赛道

  • 链接:https://codalab.lisn.upsaclay.fr/competitions/21277

本赛道要求模型参数量不超过1M,且要求选手只能在指定训练集上开发模型,禁止使用预训练模型或使用训练集之外的数据训练模型;

大模型赛道

  • 链接:https://codalab.lisn.upsaclay.fr/competitions/21278

本赛道对模型参数量和计算量无要求,允许使用额外训练数据或预训练模型,但不允许使用验证集和测试集的图像进行训练;

本次比赛采用双三次下采样生成低分辨率图像,采用峰值信噪比作为主要评价指标,结构相似度作为辅助评价指标,评价每个视角的超分辨图像与高分辨率真实图像之间的误差。


大赛官网

  • NTIRE官网:https://cvlai.net/ntire/2025/

  • 光场挑战赛Github仓库:https://github.com/SYSU-SAIL/LF-Image-SR/blob/NTIRE2025/

CodaLab网址:

  • 经典赛道:https://codalab.lisn.upsaclay.fr/competitions/21276

  • 轻量化赛道:https://codalab.lisn.upsaclay.fr/competitions/21277

  • 大模型赛道:https://codalab.lisn.upsaclay.fr/competitions/21278


赛程安排(以官网信息为准)

  • 2025-01-30: 开放在线验证平台

  • 2025-03-14: 开放测试集,关闭验证平台

  • 2025-03-21: 测试结果提交截止日期

  • 2025-03-21: 算法文档/代码/模型提交截止日期

  • 2025-03-24: 公布比赛成绩及排名

  • 2025-04-01: 论文提交截止日期

  • 2025-06: CVPR Workshop日期


大赛要求

本次挑战赛面向全社会开放,个人、高等院校、科研单位、企业等人员均可报名参赛。每位参赛者只能加入1支队伍,每支队伍最多不超过6人,每支队伍只能提交一种算法进行最终排名。


大赛奖励

发表论文是可选的,不会成为参加挑战赛或获奖的条件。本次挑战赛将邀请排名靠前的参赛者向NTIRE Workshop提交最多8页的论文,以供同行评审。论文录用后将发表在CVPR 2025 Workshop论文集中。

排名最高的参赛者和为比赛贡献新颖方法的参赛者将被邀请成为挑战赛报告论文的共同作者,该论文将在CVPR 2025 Workshop集中发表。

本次比赛的赞助商详见NTIRE 2025官网,如有额外的经济奖励和旅行补助将由NTIRE官方统一提供和发放。


大赛组织者

Yingqian Wang (wangyingqian16@nudt.edu.cn)

Zhengyu Liang (zyliang@nudt.edu.cn)

Longguang Wang (wanglongguang15@nudt.edu.cn)

Juncheng Li (junchengli@shu.edu.cn)

Jungang Yang (yangjungang@nudt.edu.cn)

Radu Timofte (Radu.Timofte@vision.ee.ethz.ch)

Yulan Guo (guoyulan@sysu.edu.cn)

大赛交流群

欢迎大家积极参赛,如群满或二维码到期请通过邮箱与我们联系加群!

基于Python的天气预测与可视化(完整源码+说明文档+数据),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值