在部署和管理 LLM/SLM 时最大化性能和最小化费用的实用策略。
可扩展性和成本难题
让我们直接进入问题的核心——扩展大型语言模型,特别是微调和检索增强生成 (RAG) 模型,是一项资源密集型工作,会很快耗尽您的 GPU 预算。作为一个亲身应对这些挑战的人,我可以证明,在试图榨干每一滴性能的同时,看着 GPU 利用率飙升是多么令人沮丧。
问题的关键在于现代语言模型的庞大规模。数十亿个参数需要加载到 GPU 内存中,更不用说在推理过程中存储中间激活的额外开销。我们不要忘记微调所需的海量数据集或 RAG 设置中使用的大量知识库。这是一场计算和内存需求的完美风暴,甚至可能让最强大的 GPU 集群也陷入瘫痪。
但 ML 爱好者们不要害怕!形势正在迅速变化,我们可以采用许多技术和方法来优化 GPU 利用率。让我们探索一些最有前途的解决方案,从改变游戏规则的参数高效微调 (PEFT) 开始。
基于适配器的方法:GPU 的最佳朋友
进入基于适配器的微调领域,这项技术在我自己处理大型语言模型的工作中具有革命性意义。核心思想非常简单:我们在微调过程中不更新预训练模型的所有参数,而是在冻结基础模型的各层之间引入小型可训练模块(适配器)。
为什么这对 GPU 利用率来说如此重要?好吧,考虑一下:与基础模型中的数十亿个参数相比,典型的适配器可能只会为您的模型添加几百万个参数。这意味着我们可以将模型的大部分冻结在 CPU 内存中甚至磁盘上,在训练和推理期间仅将适配器和必要的层加载到 GPU 内存中。
我亲眼目睹了这种方法在某些情况下可以将 GPU 内存使用量减少高达 95%,使我们能够对原本在硬件限制下完全无法实现的模型进行微调。但好处不止于此——基于适配器的微调通常可以加快收敛速度,甚至可以通过防止小数据集上的过度拟合来提高泛化能力。
LoRA:低秩革命
如果说适配器是开胃菜,那么低秩自适应 (LoRA) 就是我们参数高效微调盛宴中的主菜。LoRA 通过使用低秩矩阵近似微调过程中的权重更新,将适配器概念提升到了一个新的水平。
实际上,这意味着我们可以在仅更新一小部分参数的情况下实现与完全微调类似甚至更好的性能。我已经在几个项目中尝试了 LoRA,结果一直令人印象深刻。我们谈论的是在某些情况下将可训练参数的数量减少 10,000 倍或更多,而对模型质量的影响却微乎其微。
从 GPU 利用率的角度来看,LoRA 是天赐之物。它使我们能够在消费级硬件上微调大量模型,从而开辟了曾经只有那些能够使用高端 GPU 集群的人才能实现的可能