使用RAG与Fine-tune技术

当使用RAG与精调技术

在利用大型语言模型(LLMs)的潜力时,选择RAG(检索增强生成)和精调(fine-tuning)技术至关重要。本文探讨两种技术的适用场景,包括LLMs、不同规模的模型及预训练模型。

简介
  • LLMs:通过大规模文本数据预训练,具备生成文本、回答问题等能力。
  • RAG:增强LLMs,通过检索数据库中的相关知识为文本生成提供上下文。
  • 精调:通过域特定数据训练,使预训练LLM适应特定任务。
RAG与精调的优势
  • RAG:保留预训练能力,通过外部知识源自定义增强,无需重训练,数据需求较低。
  • 精调:面临遗忘问题,依赖高质量数据,缺乏外部知识,不易定制,需要重新训练。
应用场景
  • 大型模型(如GPT-4):RAG优于精调,避免遗忘预训练能力,易于引入外部知识。
  • 中型模型:RAG和精调均可行,根据是否需要保留通用知识选择。
  • 小型模型:精调更适合,因为它们本身缺乏广泛能力,通过域特定数据训练可以直接获得知识。
预训练模型的使用
  • RAG:适用于需要保留通用能力、最小化遗忘、引入外部知识的场景。
  • 精调:适用于依赖专业知识或记忆的任务,对于小型模型,直接注入知识风险较低。
实际考虑
  • 数据和知识源访问:精调需大量域特定数据集;RAG更依赖外部知识源。
  • 知识灵活性:RAG支持频繁更新知识源而无需重新训练;精调需定期训练。
  • 训练和推理设施:RAG主要选择和更新数据源;精调需要计算资源。
  • 综合应用:许多应用将RAG和精调结合使用,选择最佳方法以适应任务需求。
结论

选择RAG或精调技术对于最大化LLMs、小型模型和预训练系统在金融服务中的性能至关重要。这些考虑因素复杂,依赖于模型大小、用例重点、基础设施限制等。通常,结合RAG和精调可实现对话能力和领域专业知识的最佳平衡。随着LLMs和AI的进步,RAG的重要性将增加,但精调在适合的地方仍然重要。

### 使用 Python 实现 DeepSeek 和 RAG #### 关于 DeepSeek 的实现 DeepSeek 并不是一个广泛认可的标准术语或库名称,在当前的文献和技术文档中并没有直接提及名为 "DeepSeek" 的具体工具或方法[^1]。然而,如果假设 DeepSeek 是指一种特定的深度学习搜索引擎或是自定义开发的一个项目,则其实现有赖于具体的架构设计和需求。 对于构建类似的系统,可以考虑采用 Pyserini 这样的工具,它是一个基于 Lucene 的 Python 接口,不仅支持传统的 BM25 检索算法,还兼容 Dense Retrieval 技术,可用于高效地处理大规模文本检索任务。以下是利用 Pyserini 构建一个简单检索系统的例子: ```python from pyserini.search import SimpleSearcher searcher = SimpleSearcher('indexes/lucene-index.core18') hits = searcher.search('information retrieval') for i in range(0, min(10, len(hits))): print(f'{i+1:2} {hits[i].docid:4} {hits[i].score:.5f}') ``` 这段代码展示了如何初始化 `SimpleSearcher` 对象并执行一次查询操作,返回前十个最相关的文档 ID 及其得分。 #### 关于 RAG (Retrieval-Augmented Generation) 为了实现 RAG 系统,推荐使用 Intel Labs 开发的 **RAG Foundry** 框架。此框架旨在简化大型语言模型在检索增强生成场景下的应用过程,提供了从数据准备到最终评估的一站式解决方案[^2]。下面给出一段简化的代码片段,说明怎样借助 RAG Foundry 来加载预训练好的 LLM,并对其进行微调以适应特定领域内的问答任务: ```python import torch from transformers import AutoTokenizer, RagTokenForGeneration from rag_foundry.data import DatasetLoader from rag_foundry.trainers import Trainer tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq") dataset_loader = DatasetLoader() train_dataset = dataset_loader.load_train_data() trainer = Trainer(model=model, tokenizer=tokenizer) trainer.finetune(train_dataset=train_dataset) ``` 上述脚本首先导入必要的模块,接着实例化了一个基于 Facebook 提供的基础版本 RAG Tokenizer 和 Model;之后通过 `DatasetLoader` 类获取训练所需的数据集;最后创建 `Trainer` 对象来进行模型参数调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值