Tensorflow 实战google深度学习框架 07 滑动平均模型

import tensorflow as tf

#1. 定义变量及滑动平均类


v1 = tf.Variable(0, dtype=tf.float32)
step = tf.Variable(0, trainable=False)
ema = tf.train.ExponentialMovingAverage(0.99, step)
maintain_averages_op = ema.apply([v1]) 


# 2. 查看不同迭代中变量取值的变化
with tf.Session() as sess:

    # 初始化
    init_op = tf.global_variables_initializer()
    sess.run(init_op)
    print sess.run([v1, ema.average(v1)])

    # 更新变量v1的取值
    sess.run(tf.assign(v1, 5))
    sess.run(maintain_averages_op)
    print sess.run([v1, ema.average(v1)]) 

    # 更新step和v1的取值
    sess.run(tf.assign(step, 10000))  
    sess.run(tf.assign(v1, 10))
    sess.run(maintain_averages_op)
    print sess.run([v1, ema.average(v1)])       

    # 更新一次v1的滑动平均值
    sess.run(maintain_averages_op)
    print sess.run([v1, ema.average(v1)])       

[0.0, 0.0]
[5.0, 4.5]
[10.0, 4.5549998]
[10.0, 4.6094499]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mtj66

看心情

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值