机器学习调包侠:创建符合正态分布的测试数据

本篇对应教程

油管原版B站搬运。原版教程其实是介绍特征的好坏的,但是我觉得这个看一遍就懂了,没什么值得做笔记的,倒是视频中创建正态分布测试数据的例子值得记录一下

代码

import numpy as np
import matplotlib.pyplot as plt

# 定义样本数量,两种各500,共1000
greyhounds = 500
labs = 500

# np.random.randn()功能是返回一组满足标准正态分布的随机值
# 也就是说这组数据的平均值是0,标准差是1,且满足正态分布
# 一个参数时表示的是这一组随机值一共有指定参数个
# 本例中的4表示的是将标准差从1放大到4,28表示的是将平均值从0调整为28
# 最后的结果就是生成一组平均值为28,标准差为4,且满足正态分布的随机数,这组数共有500个数据
grey_height = 28 + 4 * np.random.randn(greyhounds)
lab_height = 24  + 4 * np.random.randn(labs)

plt.hist([grey_height, lab_height], stacked = True, color = ['r', 'b'])
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木千

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值