团队准备解散了!

今天的文章会有点不一样,我的朋友郭乐,之前联系过一段时间,前两天找我聊天,说他们现团队元旦后准备解散了,原因是整个业务不盈利,问我有没有合适的职位可做。

职位这个问题,其实我之前也说过很多次了,但要说到长期有发展的职位,我第一推荐就是 AI Agent 智能体,AI 大模型时代的大风口。特别是随着 OpenAI 发布 o3 最强编程大模型,AI Agent 智能体2025年一定爆发之年。

它是未来 10-20 年的大机遇,我们在这个行业深耕2年多,不但自己拿到结果,还带着 20000 名学员一起拿到了不错的成绩,帮助他们在企业内部升职加薪或者成功跳槽、再或者对未来很有信心,不再焦虑了

0fc3648e5a51f827ad9380923a4dc271.png

为了让大家更快更低成本了解 AI Agent 智能体。

我们提炼了一个《3天 AI Agent 智能体项目实战直播训练营》,通过3天时间带你体验 AI Agent 智能体从需求分析、架构设计、架构选型、容量规划、代码落地、服务治理等企业落地全流程。

刚好又赶上元旦超级活动,原价199元的《3天 AI Agent 智能体项目实战直播训练营》为了回馈粉丝们的支持直接降价到19元今天开放一天报名特权,仅限99名,按照这个速度,估计一会就能抢完抢完之后立刻涨价到 199 元!

1

3天 AI Agent 智能体项目实战直播课

3天的直播课,阿里P9级大佬带你快速掌握 AI Agent 智能体核心技术和企业级项目实践经验。

第一天:AI Agent 智能体技术原理篇

全面拆解 AI Agent 智能体技术原理,掌握 AI Agent 智能体三大能力及其运行机制。

第二天:AI Agent 智能体应用开发实战篇

深度讲解 AI Agent 智能体技术选型及开发实践,具备开发 AI Agent 智能体核心技术能力。

第三天:AI Agent 智能体企业级案例实战篇

从需求分析、架构设计、技术选型、资源规划评估、代码落地、服务治理等全流程落地实战,深度学习企业级 AI Agent 智能体项目流程级重点难点问题解决。

ca8b0b371de239b044e2689fbeca0a86.png

bb306e6f2a065cbd4589883526622181.png

3天时间,你能学会什么?

在真实项目实践中,获得以下能力:

第一、全面了解 AI Agent 智能体的原理、架构和实现方法,掌握核心技术精髓。

第二、熟练使用 Dify/Coze 平台和 LangChain 开发框架,为未来的技术实践打下坚实基础。

第三、通过企业级项目实战演练,能够独立完成 AI Agent 智能体的设计开发和维护,提升解决实际问题的能力。

第四、为职业发展提供更多可能性,无论是晋升加薪还是转行跳槽,提升竞争力。

限时优惠:

元旦超级活动,原价199元,现在报名只需19元!这是一个难得的机会,让我们一起踏上 AI Agent 智能体技术之旅,开启技术新纪元!

2

我为什么推荐这门课给你?

第一、大厂都在战略布局的方向,不管是国外的微软、谷歌,还是国内的百度等大厂都在战略布局,2025年必定是 AI Agent 智能体大爆发的一年。

2e54a448e2ba224bc0b698e3eb51b157.png

第二、这是大势所趋,我们正在经历一场重大技术变革,还不像当年的互联网的兴起,这是一场颠覆性的变革,掉队就等于淘汰,因为未来所有应用都将被 AI Agent 智能体重写一遍。

9f99b9ccaa732fda8adf2a85ac0c491b.png

第三、现在处于红利期,先入场的同学至少会享受4~5年的红利,拿高薪,并且会掌握更多的资源。

3c4d2d37e32f5065ffb93beff2db72b7.png

第四、企业需求旺盛,越来越多的企业开始在 AI Agent 智能体领域进行创新尝试,这为我们提供了丰富的岗位机会和广阔的发展空间。

bd4e53f9ec06cf51498ecf7556d820f4.png

最近两年一直在落地大模型企业级应用,大模型的价值太大了,AI Agent 智能体的潜力太大了,“未来所有应用都将被 AI Agent 智能体重写一遍”这句话也是今天听到最多的一句话。我的团队这两年,尤其是今年接了很多开发 AI Agent 智能体的项目,越来越多的企业都开始做这方面的创新落地。

AI Agent 智能体足够重要,但也足够复杂,我这两年的实践结论是,想开发出一个能够可靠稳定的 AI Agent 智能体应用实在太难了,大模型技术本身的复杂度,大模型推理的不确定性等等,这些困难直接导致很多人对其望而却步,或是遇到问题无从下手。一般的技术同学想要自己掌握 AI Agent 智能体太难了。

为此我特意打造了一个为期3天的 AI Agent 智能体企业实战训练营:

c2590cd9eb17ddae32cf699dab0b4245.png

课程原价199元,元超级活动,现在仅花19元就能拿下!抢完立刻恢复199元!

3

今天报名再送4个配套福利

配套福利一:AI Agent 智能体训练营配套学习资料,包括:PPT 课件、实战代码、企业级智能体案例和补充学习资料。

e8632aec4046e55b4c3bb66b14fc4dfa.jpeg

配套福利二:AI Agent 智能体训练营学习笔记包含3天直播的所有精华

68a4f51f3253891283b024c430d7d581.jpeg

配套福利三AI Agent 智能体大厂面试真题100道!覆盖百度、阿里、腾讯、字节、美团、滴滴等大厂的100道真题,不论是跳槽还是升职加薪,参考意义都重大!

ed6a1c3151a6df2b04a8d8110e8ecfb4.jpeg

配套福利四2024年中国 AI Agent 智能体行业研究报告!AI Agent 智能体是新的应用形态,大模型时代的“APP”,技术范式也发生了很大的变化, 此份研究报告探索新一代人机交互及协作范式,覆盖技术、产品、商业、企业落地应用等方面,非常值得一读!

699ac6f521b6fbcf884dc25aa594da08.jpeg

原价199元,现在19元就能拿下!

f24807f181242149f46662691f0e54da.gif

报名完添加下述助教二维码,立刻领取4重福利

4

添加助理直播学习

购买后,添加助理进行直播学习👇

ac834a5c1d94ea366588b4bcd06ed37c.jpeg

END

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值