[论文笔记] Learning Parallax Attention for Stereo Image Super-Resolution (CVPR2019)

本文介绍了CVPR2019年的一篇论文,提出了一种新的立体图像超分辨率方法,核心是视差注意力(parallax attention)机制,结合Residual ASPP模块来捕获多尺度上下文信息。通过建模像素间的对应关系,解决了传统方法中的匹配问题,并利用多任务学习、左右一致性与循环一致性约束优化。实验表明这些方法能显著提高重建效果。
摘要由CSDN通过智能技术生成

1. 简介

本文出自国防科大,提出了一个立体图像超分辨率重建的方法,主要创新点是基于视差的注意力机制 parallax attention,来建模立体图像的对应关系。另外,采用Residual ASPP 提取丰富的上下文特征,这种大感受野和多尺度的特征学习可以提取更有辨别力的特征。


首先分别提取两图像特征,然后PAM计算相似性和对齐,最后聚合特征,生成SR
首先分别提取两图像特征,然后PAM计算相似性和对齐,最后聚合特征,生成SR。

2. 方法

2.2 Residual ASPP

增大感受野,学习多尺度特征,丰富了卷积多样性。

2.1 视差注意力 parallax attention

与传统的self-attention注意力不同,parallax attention主要建模A图像的像素 x x x 与互补图像B上对应的对极线 I I I (立体图像中,对极线即为同一行的像素)上所有像素 x 1 x^1 x

图像拼接技术是将多张图像拼接在一起,形成一个较大的全景图像,以便于观察和应用的技术。在图像拼接中,存在大视差问题,即不同位置的图像存在很大的位移、旋转和缩放,需要通过合适的方法解决。现在,利用Warping Residual based Image Stitching for Large Parallax(基于Warping Residual的大视差图像拼接) 技术,可以有效地解决这个问题。 Warping Residual based Image Stitching for Large Parallax技术主要通过对图像进行区域分割,并选择合适的重叠区域进行投影变换,使得图像位置、缩放及旋转等参数产生变化,并利用残差映射来消除部分图像间的色差和亮度差异。该技术具有高精度、细节保持能力强、不易出现拼接偏差以及对图像叠加光照变化适应性强等优点,使得大视差图像拼接更为准确和可靠。 Warping Residual based Image Stitching for Large Parallax技术在智能家居、虚拟现实、无人驾驶等领域有着广泛的应用。在智能家居领域,用户可以通过连接摄像头,将多个房间的图像进行拼接,以便于用户观察各个房间的情况。在虚拟现实领域,该技术可以将多个图像拼接成一个全景视频,使用户有一种身临其境的感觉。在无人驾驶领域,该技术可以将多个摄像头的图像拼接在一起,实时观察车辆周围的情况,提高汽车行驶的安全性。 综上所述,Warping Residual based Image Stitching for Large Parallax技术有着极为广泛的应用前景和可观的经济效益。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值