[论文笔记] Learning Parallax Attention for Stereo Image Super-Resolution (CVPR2019)

本文介绍了CVPR2019年的一篇论文,提出了一种新的立体图像超分辨率方法,核心是视差注意力(parallax attention)机制,结合Residual ASPP模块来捕获多尺度上下文信息。通过建模像素间的对应关系,解决了传统方法中的匹配问题,并利用多任务学习、左右一致性与循环一致性约束优化。实验表明这些方法能显著提高重建效果。
摘要由CSDN通过智能技术生成

1. 简介

本文出自国防科大,提出了一个立体图像超分辨率重建的方法,主要创新点是基于视差的注意力机制 parallax attention,来建模立体图像的对应关系。另外,采用Residual ASPP 提取丰富的上下文特征,这种大感受野和多尺度的特征学习可以提取更有辨别力的特征。


首先分别提取两图像特征,然后PAM计算相似性和对齐,最后聚合特征,生成SR
首先分别提取两图像特征,然后PAM计算相似性和对齐,最后聚合特征,生成SR。

2. 方法

2.2 Residual ASPP

增大感受野,学习多尺度特征,丰富了卷积多样性。

2.1 视差注意力 parallax attention

与传统的self-attention注意力不同,parallax attention主要建模A图像的像素 x x x 与互补图像B上对应的对极线 I I I (立体图像中,对极线即为同一行的像素)上所有像素 x 1 x^1 x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值