【LCC系列】自动驾驶中激光雷达和相机的自动在线标定(2013)


本文介绍一个自动驾驶中激光雷达和相机 自动在线标定方法。该论文基于 点云深度不连续与图像边缘对齐的假设,提出的方法可以在 自然场景中自动 检测标定误差,并实时连续 纠正传感器漂移导致的标定误差。

论文:Automatic Online Calibration of Cameras and Lasers (2013)
作者:Jesse Levinson, Sebastian Thrun (Stanford Artificial Intelligence Laboratory)
官网:Stanford Autonomous Driving Team

论文出自鼎鼎大名斯坦福大学的自动驾驶团队的,该团队曾在DARPA无人车竞赛中夺冠。Sebastian Thrun是谷歌无人车之父,也是Udacity的创始人。 一作Jesse Levinson则是其得意门生,现在是ZOOX的联合创始人和CTO。两人都是自动驾驶领域的风云人物,来一起看看大佬曾经的杰作!

1 动机

为了利用激光雷达和相机的互补特性,需要标定两种传感器,求取其外参,以便将两种模态的数据转换到统一坐标系下,进行融合定位建图或感知。一般做法是先标定好传感器,再进行使用。但是,在机器人或无人车的运行过程中,很可能发生传感器位姿漂移,从而使标定参数产生误差,融合的数据也就不再可靠,从而引发安全问题。如何实时在线地判断传感器标定是否正确,如何纠正可能的传感器漂移导致的外参误差呢?

本文针对以上两个问题,做出两大贡献:1)提出一种概率检测算法,可以实时,高可靠地判断传感器是否准确标定,2)提出一种连续标定算法,针对缓慢的外参漂移,在线更新外参。

2 方法

该论文的目标是输入图像和点云序列,可以依靠自然场景进行实时在线地检测和纠正标定误差。该方法之所以能摆脱标定板等特定目标的限制,主要依赖于以下假设:相比标定错误,在标定正确时,激光雷达点云中的深度不连续更可能投影到相机图像的边缘位置。这个假设还是比较直观的,而且点云中的深度不连续和图像中的边缘都是非常常见的特征,基于此假设的方法也是比较容易实现的。

如何去使用这个假设涉及到以下问题:图像边缘的提取,点云深度不连续的提取,量化“更可能投影到…位置”,基于概率的量化指标判断标定误差,纠正标定误差。

2.1 提取图像边缘

分为两步:1)先图像灰度化,用边缘检测算法检测图像边缘,得到边缘图 E E E。本文采用该像素与周围8像素的最大绝对值衡量该像素对应的边缘度。2)使用图像逆距离变换赋予非边缘像素以边缘度,得到 D D D
D i , j = α ⋅ E i , j + ( 1 − α ) ⋅ max ⁡ x , y E x , y ⋅ γ m a x ( ∣ x − i ∣ , ∣ y − j ∣ ) D_{i,j} = \alpha\cdot E_{i,j}+(1-\alpha)\cdot \max_{x,y} E_{x,y}\cdot \gamma^{max(|x-i|,|y-j|)} Di,j=αEi,j+(1α)x,ymaxEx,yγmax(xi,yj)

即,每个位置 ( i , j ) (i,j) (i,j)的边缘度是该位置边缘度 E i , j E_{i,j} Ei,j和其他位置对该位置的最大辐射量的加权求和。辐射量由其他位置边缘度和距离有关。
图像边缘
如上图,每个像素都有一个数值,描述其边缘程度。

2.2 提取点云深度不连续

每条扫描线单独考虑,寻找相比两个临近点更近的点。给定点云 P i P^i Pi,计算点云 X i X^i Xi,对于 X i X^i Xi中每个点 p p p,则其深度不连续数值如下:
X p i = max ⁡ ( P p − 1 i . r − P p i ⋅ . r , P p + 1 i . r − P p i ⋅ . r , 0 ) γ X_p^i = \max (P_{p-1}^i .r - P_p^i \cdot .r, P_{p+1}^i .r - P_p^i \cdot .r,0)^{\gamma} Xpi=max(Pp1i.rPpi.r,Pp+1i.rPpi.r,0)γ

下缀 . r .r .r指每个点的距离测量。使用 γ \gamma γ为0.5。过滤所有深度不连续小于30cm的点。下图(上)绿点即为深度不连续点,投影到图像上。下图(下)显示对应图像边缘。
在这里插入图片描述

2.3 目标函数

给定标定外参 C C C,将 X i X_i Xi中的所有点投影到边缘图 D i D_i Di上,结合最后w帧数据,目标函数如下: J C = ∑ f = n − w n ∑ p = 1 ∣ X f ∣ X p f ⋅ D i , j f J_C = \sum_{f=n-w}^n \sum_{p=1}^{|X_f|} X_p^f \cdot D_{i,j}^f JC=f=nwnp=1XfXpfDi,jf

这个目标函数计算了X中深度不连续性与边缘图中边缘度乘积的和,描述了当前外参下,点云深度不连续和图像边缘的对齐程度。一般来说,值越大,对应的外参越好。

以上目标函数不是外参的函数,无法优化求解外参。理论上,可以通过全局搜索找最佳外参,但是6维参数空间太大,难以实时搜索最优值。但可以用来确定给定C是否正确。

2.4 检测标定误差

检测标定误差基于以下假设:Jc是否是J的局部最优,是C是否准确的重要指标。而对C进行局部格网搜索得到c’,如果计算对应的Jc‘都小于Jc,就可以判断当前Jc是局部最优,C正确。

如果搜索半径为1,则6维参数对应 3 6 = 729 3^6=729 36=729个不同J (包含Jc)。 F c F_c Fc为728个J的扰动值比Jc更小的比例。 F c F_c Fc越接近1,Jc是局部最优的概率越大,则标定正确可能性越大。

在一段数据序列上,分别计算正确标定和错误标定的 F c F_c Fc,并用高斯分布拟合。
在这里插入图片描述
在这里插入图片描述

左侧为错误标定的分布,右侧为正确标定的分布。基于两个高斯分布,就可计算正确标定的概率 (Fc = x):

在这里插入图片描述
计算得到概率,通过与设定阈值比较,就可判定标定是否正确。

注意此处P不是概率分布,而是统计测试

上面使用直方图进行可视化,用线画图可视化如下。可得两个结论:1)正确标定下,(% of worse calibrations) 数值接近1,而错误标定下,在0.5上下跳动。2)相比single-frame window, 使用9-frame window的结果噪声更小,更准确。
在这里插入图片描述

2.5 自动在线标定

除了判断一个标定是否正确,还可以利用全局最优Jc附近的目标函数J的局部凸性假设,来跟踪C随时间的小变化

方法:在每一此迭代中,如果C的所有扰动导致J下降,C保持不变;否则,在格网搜索的所有C’中,选择最大目标函数J对应的标定C’。

相比单帧,9帧效果更好

3 实验

激光雷达:Velodyne HDL-64E S2 LIDAR, 64线,水平360度,垂直-22到+2度, 10Hz, 每转100,000点
相机:Point Gray Ladybug3 Panoramic unit (包含5个相机,只用其一), 10Hz,

C++实现, 实时运行在笔记本CPU。

3.1 在线检测标定误差

随机添加旋转平移误差 (up to 20cm, 2 degrees),进行测试。

  • 使用9帧窗口,在超过一千帧的数据上,可百分百分辨0.25度或10cm的误差。90%情况下可分辨0.1度的误差。
  • 窗口越大,误差检测能力越强,但计算量大,无法实时。

3.2 在线纠正标定误差

旋转漂移更常见,对旋转添加随机扰动。

  • 水平方向角度(yaw角)更准确。水平扫描分辨率高,提取垂直方向边缘。
  • 对roll, pitch的跟踪平均误差0.12度。对yaw的跟踪平均误差0.06度。
  • 整体来说,能达到0.1度的旋转标定精度

4 总结

  • 两个技术:标定误差的在线检测和在线纠正。
  • 两个假设:1)点云的深度不连续与图像边缘应对齐(前端特征提取);2)目标函数J在全局最优附近是凸的(后端优化)。
  • 主要结论:1)yaw角标定更准确;2)整体达到0.1度精度;3)使用数据窗口更鲁邦。
  • 可能的改进:更大的格网半径 (larger grid radii),使用 Monte Carlo 采样方法 (比如使用粒子滤波,而非本文的贪婪方法)。
  • 8
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
结合多传感设备以实现高级的感知能力是自动驾驶汽车导航的关键要求。传感器融合用于获取有关周围环境的丰富信息。摄像头和激光雷达传感器的融合可获取精确的范围信息,该信息可以投影到可视图像数据上。这样可以对场景有一个高层次的认识,可以用来启用基于上下文的算法,例如避免碰撞更好的导航。组合这些传感器时的主要挑战是将数据对齐到一个公共域。由于照相机的内部校准的误差,照相机激光雷达之间的外部校准以及平台运动导致的误差,因此这可能很困难。在本文,我们研究了为激光雷达传感器提供运动校正所需的算法。由于不可能完全消除由于激光雷达的测量值投影到同一里程计框架而导致的误差,因此,在融合两个不同的传感器时,必须考虑该投影的不确定性。这项工作提出了一个新的框架,用于预测投影到移动平台图像帧(2D)激光雷达测量值(3D)的不确定性。所提出的方法将运动校正的不确定性与外部和内部校准的误差所导致的不确定性相融合。通过合并投影误差的主要成分,可以更好地表示估计过程的不确定性。我们的运动校正算法和提出的扩展不确定性模型的实验结果通过在电动汽车上收集的真实数据进行了演示,该电动汽车配备了可覆盖180度视野的广角摄像头和16线扫描激光雷达

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值