曲线曲面的基本理论之向量与向量函数

一、向量

       具有大小和方向的量称为向量,又称矢量。一般向量 p p p可以表示为
p = O M → = x i + y j + z k = ( x , y , z ) p =\overrightarrow {OM} = x{\bf{i}} + y{\bf{j}}+ z{\bf{k}} = (x,y,z) p=OM =xi+yj+zk=(x,y,z)

       线性代数中已经学习过有关向量的各种代数运算以及基本性质,现总结一下将其罗列如下:

       设 λ ∈ R , p = ( x , y , z ) , p i = ( x i , y i , z i ) ( i = 1 , 2 , 3 ) \lambda\in R ,p = (x,y,z) , p_i = (x_i,y_i,z_i)(i = 1,2,3) λRp=(x,y,z),pi=(xi,yi,zi)(i=1,2,3), 则有

  1. 长度(模):
    ∣ p ∣ = x 2 + y 2 + z 2 \begin{vmatrix} p \end{vmatrix} = \sqrt{x^2 + y^2 + z^2} p=x2+y2+z2
    ∣ p ∣ ≠ 0 , 则 p / ∣ p ∣ \begin{vmatrix} p \end{vmatrix} \not= 0 , 则{p}/\lvert p \lvert p=0,p/p是与p同向的单位方向向量.
           

  2. 数乘:
    λ p = ( λ x , λ y , λ z ) . \lambda p = (\lambda x , \lambda y ,\lambda z). λp=(λx,λy,λz).


  3. p 1 + p 2 = ( x 1 + x 2 , y 1 + y 2 , z 1 + z 2 ) . p_1 + p_2 = (x_1 + x_2 , y_ 1 + y_2 , z_1 + z_2). p1+p2=(x1+x2,y1+y2,z1+z2).

  4. 数量积(内积)
    p 1 ⋅ p 2 = ( p 1 , p 2 ) = x 1 x 2 + y 1 y 2 + z 1 z 2 . p_1 \cdot p_2 = (p_1 , p_2) = x_1x_2 + y_1y_2 + z_1z_2. p1p2=(p1,p2)=x1x2+y1y2+z1z2.

  5. 夹角:若记 p 1 与 p 2 p_1 与 p_2 p1p2 之间的夹角为 θ ∈ [ 0 , π ] \theta \in [0,\pi] θ[0,π] ,则
    c o s ( θ ) = p 1 ⋅ p 2 ∣ p 1 ∣ ⋅ ∣ p 2 ∣ cos(\theta) = \frac{p_1 \cdot p_2}{{\mid p_1\mid }\cdot {\mid p_2\mid }} cos(θ)=p1p2p1p2
    p 1 ⊥ p 2 p_1 \perp p_2 p1p2的充要条件为 c o s ( θ ) = 0 , 即 p 1 ⋅ p 2 = 0. cos(\theta) = 0,即p_1 \cdot p_2 = 0. cos(θ)=0,p1p2=0.

  6. 向量积(外积)
    p 1 × p 2 = ( ∣ y 1 z 1 y 2 z 2 ∣ , ∣ z 1 x 1 z 2 x 2 ∣ , ∣ x 1 y 1 x 2 y 2 ∣ ) p_1 \times p_2 = \begin{pmatrix} {\begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \\ \end{vmatrix}} , & {\begin{vmatrix} z_1 & x_1 \\ z_2 & x_2 \\ \end{vmatrix}} , & {\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \end{vmatrix}}\\ \end{pmatrix} p1×p2=(y1y2z1z2,z1z2x1x2,x1x2y1y2)
    p 1 × p 2 p_1 \times p_2 p1×p2是一个与 p 1 , p 2 p_1,p_2 p1,p2都垂直的向量,并且按照 p 1 , p 2 , p 1 × p 2 p_1,p_2,p_1 \times p_2 p1,p2,p1×p2满足右手法则。其长度为
    p 1 × p 2 = ∣ p 1 ∣ ⋅ ∣ p 2 ∣ c o s ( θ ) p_1 \times p_2 = {\mid p_1\mid }\cdot {\mid p_2\mid }cos(\theta) p1×p2=p1p2cos(θ)
    其中, θ \theta θ p 1 和 p 2 p_1和p_2 p1p2之间的夹角。向量积的几何意义为: ∣ p 1 × p 2 ∣ {\mid p_1\times p_2\mid } p1×p2表示以 p 1 和 p 2 p_1和p_2 p1p2为邻边的平行四边形的面积。

  7. 混合积(纯量积)
    ( p 1 , p 2 , p 3 ) = ( p 1 × p 2 ) ⋅ p 3 = ∣ x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 ∣ . (p_1,p_2, p_3) = (p_1\times p_2)\cdot p_3 = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \\ \end{vmatrix}. (p1,p2,p3)=(p1×p2)p3=x1x2x3y1y2y3z1z2z3.
    若以 p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3为邻边做空间中的一个六面体,则其体积为

V = ∣ p 1 × p 2 ∣ ∣ p 3 ∣ c o s ( θ ) , V = {\mid p_1\times p_2\mid }{\mid p_3\mid }cos(\theta) , V=p1×p2p3cos(θ),
其中, θ 为 p 3 和 p 1 × p 2 \theta 为p_3和 p_1\times p_2 θp3p1×p2 之间的夹角 。则混合积的几何意义为:如果 p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3符合右手法则,则 ( p 1 , p 2 , p 3 ) = V (p_1,p_2, p_3) = V (p1,p2,p3)=V ,否则 ( p 1 , p 2 , p 3 ) = − V (p_1,p_2, p_3) = -V (p1,p2,p3)=V.
注: ( p 1 , p 2 , p 3 ) = 0 (p_1,p_2, p_3) = 0 (p1,p2,p3)=0 ,意味着 p 1 , p 2 , p 3 p_1,p_2,p_3 p1,p2,p3共面。

二、向量函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

       
       
       

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值