流体力学-----动量方程的推导和理解---NS方程

文章详细介绍了如何基于牛顿第二定律推导动量方程,探讨了两种不同类型的微分方程——非守恒型和守恒型,用于描述随流体运动和空间位置固定的流体微元。重点讨论了剪切力分析的前提条件,即速度分量与坐标轴的一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

可以参考之前的博客计算流体力学1-流体力学的控制方程

推导动量方程的流动模型

        动量方程的物理原理是牛顿第二定律,将牛顿第二定律应用于四种流动模型的任意一个,得到的方程都是动量方程,只是形式不同。以随流体运动的无限小流体微元模型为例推导动量方程, 这种模型对于动量和能量方程的推导尤其方便 。
在这里插入图片描述

推导过程

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

书中给的剪切力分析前提条件:速度的三个分量u、v、w的正增量和坐标轴一致

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

非守恒型微分方程---沿流线运动的无穷小流体微团
守恒型微分方程---空间位置固定的无穷小流体微团

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值