数值积分公式及龙贝格(Romberg)算法实现matlab

这篇博客介绍了数值积分的基本思想,重点探讨了复化梯形求积公式以及基于此的Richardson外推法和Romberg算法。提供的Romberg算法MATLAB程序实现了4阶精度的积分计算,虽然精度达到10^-4,但适用于对精度要求不高的情况。代码来源于网络并进行了简单的应用验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数值积分方法得基本思想

在这里插入图片描述

二、复化求积公式

在这里插入图片描述

三、基于复化梯形求积公式的高精度求积算法——Richardson外推法和Romberg算法

在这里插入图片描述
在这里插入图片描述

       
       
       
       

四、Romberg算法的matlab程序:

function Romberg
% 龙贝格(Romberg数值求解公式)
% inputs:
%   -fun:积分函数句柄
%   -a/b:积分上下限
%   -tol:积分误差
% Outputs:
%   -R:4阶精度Romberg积分值
%   -k:迭代次数
%   -T:整个迭代过程
%
% Example
% fun=@(x)x^5;

a = 0;
b = 1;
epsilon = 1e-6;
tol = epsilon;
fun = @(x) x^5;
k=0; % 迭代次数
n=1; % 区间划分个数
h=b-a;
T=h/2*(fun(a)+fun(b));
err=1;
while err>=tol
    k=k+1;
    h=h/2;
    tmp=0;
    for i=1:n
        tmp=tmp+fun(a+(2*i-1)*h);
    end
    T(k+1,1)=T(k)/2+h*tmp;
    for j=1:k
        T(k+1,j+1)=T(k+1,j)+(T(k+1,j)-T(k,j))/(4^j-1);
    end
    n=n*2;
    err=abs(T(k+1,k+1)-T(k,k));
end
R=T(k+1,k+1)
end

可以直接运行的,只出来积分的结果。

       代码是根据别人的写的(下面有参考链接),通过带进去几个函数发现精度只有 1 0 − 4 10^{-4} 104,因为是帮师姐编的论文里面的一笑部分,对精度要求不高,就没有再改进。

程序参考网址

评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值