流体力学-----连续性方程的推导和理解

### SIMPLE算法简介 SIMPLE(Semi-Implicit Method for Pressure Linked Equations)是一种广泛应用于计算流体力学(CFD)中求解纳维-斯托克斯方程的方法[^1]。该方法主要用于解决压力速度耦合问题,在不可压缩流动模拟方面表现尤为突出。 ### 压力修正方程推导过程 为了克服直接离散化原始形式的困难,SIMPLE通过引入虚拟的压力场来间接获得满足连续性条件的速度场。具体来说: 1. **预测步**:利用当前迭代步得到的速度初值猜测的压力场,按照动量方程更新新的速度估计值; 2. **校正步**:基于新旧两轮之间的差异构建一个关于实际压差增量的泊松型方程——即所谓的“压力修正方程”,从而调整最终输出的结果使其更接近真实情况; 此过程中涉及到的关键公式如下所示: ```matlab % MATLAB伪代码表示 Ap * (p' - p*) = b - sum(Ai*(u'_i-u*_i)) ``` 其中`p'`, `p*`分别代表经由本次循环后所期望达到的真实状态下的压力分布及其前一轮次近似解;而右侧项则反映了由于初步估算带来的残余偏差总。 ### 实际应用场景举例说明 当考虑如二维盖驱动方形空腔内的稳态层流情形时,借助于有限体积法(FVM),可以将控制区域内各节点处未知变量转化为一组代数表达式联立求解。此时采用SIMPLE策略能够有效提高收敛效率并保证数值稳定性[^2]。 此外,在处理复杂边界条件下(比如存在障碍物的情形下), Lattice Boltzmann 方法(LBM)也被证明能很好地配合SIMPLE框架完成高精度仿真任务, 尤其是在低雷诺数范围内的内部/外部绕流现象研究中有显著优势[^4].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值