选择排序
选择排序(SelectionSort)的基本思想是:每次从当前待排序的记录中选取关键字最小的记录表,然后与待排序的记录序列中的第一个记录进行交换,直到整个记录序列有序为止。
1.简单选择排序
简单选择排序(Simple Selection Sort,又称为直接选择排序)的基本操作是:通过n-i次关键字间的比较,从n-i+1个记录中选取关键字最小的记录,然后和第i个记录进行交换,i=1,2, …n-1 。
1 .1 排序示例
1.2 算法实例
//选择排序
#include <iostream>
#include <time.h>
#define SIZE 10
void SelectionSort(int *a,int len)
{
int i,j,k,h;
int temp;
for (i=0; i<len-1; i++)
{
k = i;
for (j = i+1; j < len; j++)
{
k = i;
for (j = i + 1; j<len; j++)
{
if (a[j]<a[k])
{
k =j;
}
}
if (k!=i)
{
temp = a[i];
a[i] = a[k];
a[k] = temp;
}
printf("第%d步行排序结果:",i);
for (h = 0; h < len; h++)
{
printf(" %d",a[h]);
}
printf("\n");
}
}
}
int main(int argc, const char * argv[])
{
int shuzu[SIZE],i;
srand(time(NULL));
for (i=0; i<SIZE; i++)
{
shuzu[i] = rand() % 100;
}
printf("排序前的数组为:\n");
for (i=0; i<SIZE; i++)
{
printf(" %d",shuzu[i]);
}
printf("\n");
SelectionSort(shuzu, SIZE);
printf("排序后的数组为:\n");
for (i=0; i<SIZE; i++)
{
printf(" %d",shuzu[i]);
}
printf("\n");
// std::cout << "Hello, World!\n";
return 0;
}
运行结果如图:
2.堆排序
2.1 堆的定义
是n个元素的序列H={k1, k2 , …kn} ,满足:
由堆的定义知,堆是一棵以k1为根的完全二叉树。若对该二叉树的结点进行编号(从上到下,从左到右),得到的序列就是将二叉树的结点以顺序结构存放,堆的结构正好和该序列结构完全一致。
2.2 堆的性质
① 堆是一棵采用顺序存储结构的完全二叉树,k1是根结点;
② 堆的根结点是关键字序列中的最小(或最大)值,分别称为小(或大)根堆;
③ 从根结点到每一叶子结点路径上的元素组成的序列都是按元素值(或关键字值)非递减(或非递增)的;
利用堆顶记录的关键字值最小(或最大)的性质,从当前待排序的记录中依次选取关键字最小(或最大)的记录,就可以实现对数据记录的排序,这种排序方法称为堆排序。
2.3 堆排序思想
① 对一组待排序的记录,按堆的定义建立堆;
② 将堆顶记录和最后一个记录交换位置,则前n-1个记录是无序的,而最后一个记录是有序的;
③ 堆顶记录被交换后,前n-1个记录不再是堆,需将前n-1个待排序记录重新组织成为一个堆,然后将堆顶记录和倒数第二个记录交换位置,即将整个序列中次小关键字值的记录调整(排除)出无序区;
④ 重复上述步骤,直到全部记录排好序为止。
4.4 堆的调整——筛选
⑴ 堆的调整思想
输出堆顶元素之后,以堆中最后一个元素替代之;然后将根结点值与左、右子树的根结点值进行比较,并与其中小者进行交换;重复上述操作,直到是叶子结点或其关键字值小于等于左、右子树的关键字的值,将得到新的堆。称这个从堆顶至叶子的调整过程为“筛选”,如图10-10所示。
注意:筛选过程中,根结点的左、右子树都是堆,因此,筛选是从根结点到某个叶子结点的一次调整过程。
2.5 代码实现:
//堆排序
#include <iostream>
#include <time.h>
#define SIZE 10
void HeapSort(int a[],int n)
{
int i,j,h,k;
int t;
for (i = n/2-1; i >= 0; i--)
{
while (2*i + 1 < n)
{
j = 2*i + 1;
if ((j+1) < n)
{
if (a[j] < a[j+1])
{
j++;
}
}
if (a[i]<a[j])
{
t = a[i];
a[i] = a[j];
a[j] = t;
i = j;
}
else
{
break;
}
}
}
printf("原数据构成的堆:");
for (h = 0; h < n; h++)
{
printf(" %d",a[h]);
}
printf("\n");
for (i = n-1; i>0; i--)
{
t = a[0];
a[0] = a[i];
a[i] = t;
k =0;
while (2*k+1<i)
{
j = 2*k +1;
if ((j+1)<i)
{
if (a[j]<a[j+1])
{
j++;
}
}
if (a[k]<a[j])
{
t= a[k];
a[k] = a[j];
a[j] = t;
k = j;
}
else
{
break;
}
}
printf("第%d步排序结果:",n-i);
for (h = 0; h < n; h++)
{
printf(" %d",a[h]);
}
printf("\n");
}
}
int main(int argc, const char * argv[])
{
int shuzu[SIZE],i;
srand(time(NULL));
for (i=0; i<SIZE; i++)
{
shuzu[i] = rand() % 100;
}
printf("排序前的数组为:\n");
for (i=0; i<SIZE; i++)
{
printf(" %d",shuzu[i]);
}
printf("\n");
HeapSort(shuzu,SIZE);
printf("排序后的数组为:\n");
for (i=0; i<SIZE; i++)
{
printf(" %d",shuzu[i]);
}
printf("\n");
// std::cout << "Hello, World!\n";
return 0;
}
运行结果:
参考书籍:《C/C++常用算法手册》 《数据结构-清华大学严蔚敏》