宇宙安全声明
本人写这篇文章时正值初三升高一
文章中大部分内容是作者自学的
如有错误,欢迎指出
什么是向量
向量,顾名思义,就是一个有方向有大小的量,符号为 a ⃗ \vec{a} a,常常表示为一个二元组(x,y)当然也存在1维向量,三维向量,n维向量等,常常用于表示力,方向,速度等有方向有大小的量,在图上表示为一条带箭头的线段
向量的运算
向量的加减法
对于两个向量a,b
a+b返回的是一个新的向量c
其中c的x 为 a的x 加上 b的x
c的y 为 a的y 加上 b的y
即
c
⃗
.
x
=
a
⃗
.
x
+
b
⃗
.
x
\vec{c}.x=\vec{a}.x+\vec{b}.x
c.x=a.x+b.x
c
⃗
.
y
=
a
⃗
.
y
+
b
⃗
.
y
\vec{c}.y=\vec{a}.y+\vec{b}.y
c.y=a.y+b.y
减法同理
c的x 为 a的x 减去 b的x
c的y 为 a的y 减去 b的y
即
c
⃗
.
x
=
a
⃗
.
x
−
b
⃗
.
x
\vec{c}.x=\vec{a}.x-\vec{b}.x
c.x=a.x−b.x
c
⃗
.
y
=
a
⃗
.
y
−
b
⃗
.
y
\vec{c}.y=\vec{a}.y-\vec{b}.y
c.y=a.y−b.y
转移到一个坐标系上
将向量a,c在图上表示出来
再将向量b接在向量a的箭头上
我们会发现向量b与向量c的箭头再同一位置
向量的乘法
向量的乘法分为两种:点积和叉积
点积其实就是前面向量加法的变种,只不过把加法变为了乘法
即
c
⃗
.
x
=
a
⃗
.
x
−
b
⃗
.
x
\vec{c}.x=\vec{a}.x-\vec{b}.x
c.x=a.x−b.x
c
⃗
.
y
=
a
⃗
.
y
−
b
⃗
.
y
\vec{c}.y=\vec{a}.y-\vec{b}.y
c.y=a.y−b.y
真正值得讲的是叉积
对于两个向量a,b
他们的叉积是一个标量c
c的值为 a的x乘上b的y 加上 b的x乘上a的y
即
c
⃗
=
(
a
⃗
.
x
∗
b
⃗
.
y
,
a
⃗
.
y
∗
b
⃗
.
x
)
\vec{c}=(\vec{a}.x*\vec{b}.y , \vec{a}.y*\vec{b}.x)
c=(a.x∗b.y,a.y∗b.x)
问题来了,有什么用呢?
我不知道(
向量的模
向量的模,即向量的长度,记为|a|
是不是看起来很像绝对值的符号?
事实上,对一个数取绝对值其实也就等价于取一个一位向量的长度
向量的模的计算方式:
x
2
+
y
2
2
\sqrt[2]{x^2+y^2}
2x2+y2
(其实就是两点间距离公式)
向量的数乘
一个向量a乘上一个实数b,最终得到一个向量c
其中 c的x 为 a的x 乘上 b
c的y 为 a的x 乘上 b
求一个向量的坐标表示
已知A(a,b),B(c,d) 易证 A B ⃗ = ( a − c , b − d ) \vec{AB}=(a-c,b-d) AB=(a−c,b−d)
向量的相关性质
如何判断两个向量共线?
如果存在一个数
β
\beta
β使得
a
⃗
=
β
∗
b
⃗
\vec{a}=\beta*\vec{b}
a=β∗b
则a,b两个向量共线
如何判断三点共线
若
O
B
⃗
=
β
O
A
⃗
+
(
1
−
β
)
O
C
⃗
\vec{OB}=\beta\vec{OA} + (1-\beta)\vec{OC}
OB=βOA+(1−β)OC
则A,B,C三点共线
矩阵
为什么要在这里讲矩阵呢?
事实上,对于一个n行m列的矩阵
你可以将它看作m个n维向量或n个m维向量
所以事实上,矩阵与向量是等价的
对于一个矩阵,我们可以这样表示
a
=
[
1
2
3
4
5
6
7
8
9
]
a= \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right]
a=
147258369
对于这个矩阵a,我们可以将它分解为三个向量:
a
1
=
[
1
2
3
]
a1= \left[ \begin{matrix} 1 & 2 & 3 \\ \end{matrix} \right]
a1=[123]
a
2
=
[
4
5
6
]
a2= \left[ \begin{matrix} 4& 5 & 6 \\ \end{matrix} \right]
a2=[456]
a
3
=
[
7
8
9
]
a3= \left[ \begin{matrix} 7& 8 & 9 \\ \end{matrix} \right]
a3=[789]
所以事实上,矩阵就是一群 变量
矩阵乘法
矩阵乘法的前提是第一个矩阵的列等于第二个矩阵的行
产生的新矩阵的 第i行第j列的值 等于 第一个矩阵的第i行的向量 乘上 第二个矩阵的第j列向量
如图,这是两个矩阵a,b
a
=
[
a
b
c
d
e
f
]
b
=
[
g
h
i
j
k
l
]
a= \left[ \begin{matrix} a & b & c \\ d & e & f \end{matrix} \right] b= \left[ \begin{matrix} g & h\\ i & j\\ k & l \end{matrix} \right]
a=[adbecf]b=
gikhjl
那么生成的矩阵c则为
c
=
[
a
∗
g
+
b
∗
i
+
c
∗
k
a
∗
h
+
b
∗
i
+
c
∗
l
d
∗
g
+
e
∗
i
+
f
∗
k
d
∗
h
+
e
∗
j
+
f
∗
l
]
c= \left[ \begin{matrix} a*g+b*i+c*k & a*h+b*i+c*l\\ d*g+e*i+f*k & d*h+e*j+f*l\\ \end{matrix} \right]
c=[a∗g+b∗i+c∗kd∗g+e∗i+f∗ka∗h+b∗i+c∗ld∗h+e∗j+f∗l]
h
=
s
i
n
β
∣
n
⃗
∣
h=sin\beta|\vec{n}|
h=sinβ∣n∣
想象一个平行四边形
这个四边形底边上的高等于底边与斜边夹角的sin乘上斜边的长度(斜边向量的模)
如果接下来还学习到了新的向量知识,我还会持续更新
点个收藏8!