向量学习笔记(持续更新)

宇宙安全声明

本人写这篇文章时正值初三升高一
文章中大部分内容是作者自学的
如有错误,欢迎指出

什么是向量

向量,顾名思义,就是一个有方向有大小的量,符号为 a ⃗ \vec{a} a ,常常表示为一个二元组(x,y)当然也存在1维向量,三维向量,n维向量等,常常用于表示力,方向,速度等有方向有大小的量,在图上表示为一条带箭头的线段

向量的运算

向量的加减法

对于两个向量a,b
a+b返回的是一个新的向量c
其中c的xa的x 加上 b的x
c的ya的y 加上 b的y
c ⃗ . x = a ⃗ . x + b ⃗ . x \vec{c}.x=\vec{a}.x+\vec{b}.x c .x=a .x+b .x
c ⃗ . y = a ⃗ . y + b ⃗ . y \vec{c}.y=\vec{a}.y+\vec{b}.y c .y=a .y+b .y
减法同理
c的xa的x 减去 b的x
c的ya的y 减去 b的y
c ⃗ . x = a ⃗ . x − b ⃗ . x \vec{c}.x=\vec{a}.x-\vec{b}.x c .x=a .xb .x
c ⃗ . y = a ⃗ . y − b ⃗ . y \vec{c}.y=\vec{a}.y-\vec{b}.y c .y=a .yb .y
转移到一个坐标系上
将向量a,c在图上表示出来
再将向量b接在向量a的箭头上
我们会发现向量b与向量c的箭头再同一位置

向量的乘法

向量的乘法分为两种:点积和叉积
点积其实就是前面向量加法的变种,只不过把加法变为了乘法
c ⃗ . x = a ⃗ . x − b ⃗ . x \vec{c}.x=\vec{a}.x-\vec{b}.x c .x=a .xb .x
c ⃗ . y = a ⃗ . y − b ⃗ . y \vec{c}.y=\vec{a}.y-\vec{b}.y c .y=a .yb .y

真正值得讲的是叉积
对于两个向量a,b
他们的叉积是一个标量c
c的值为 a的x乘上b的y 加上 b的x乘上a的y
c ⃗ = ( a ⃗ . x ∗ b ⃗ . y , a ⃗ . y ∗ b ⃗ . x ) \vec{c}=(\vec{a}.x*\vec{b}.y , \vec{a}.y*\vec{b}.x) c =(a .xb .y,a .yb .x)
问题来了,有什么用呢?
我不知道(

向量的模

向量的模,即向量的长度,记为|a|
是不是看起来很像绝对值的符号?
事实上,对一个数取绝对值其实也就等价于取一个一位向量的长度
向量的模的计算方式: x 2 + y 2 2 \sqrt[2]{x^2+y^2} 2x2+y2
(其实就是两点间距离公式)

向量的数乘

一个向量a乘上一个实数b,最终得到一个向量c
其中 c的xa的x 乘上 b
c的ya的x 乘上 b

求一个向量的坐标表示

已知A(a,b),B(c,d) 易证 A B ⃗ = ( a − c , b − d ) \vec{AB}=(a-c,b-d) AB =(ac,bd)

向量的相关性质

如何判断两个向量共线?

如果存在一个数 β \beta β使得 a ⃗ = β ∗ b ⃗ \vec{a}=\beta*\vec{b} a =βb
则a,b两个向量共线

如何判断三点共线

O B ⃗ = β O A ⃗ + ( 1 − β ) O C ⃗ \vec{OB}=\beta\vec{OA} + (1-\beta)\vec{OC} OB =βOA +(1β)OC
则A,B,C三点共线

矩阵

为什么要在这里讲矩阵呢?
事实上,对于一个n行m列的矩阵
你可以将它看作m个n维向量或n个m维向量
所以事实上,矩阵与向量是等价的
对于一个矩阵,我们可以这样表示
a = [ 1 2 3 4 5 6 7 8 9 ] a= \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] a= 147258369
对于这个矩阵a,我们可以将它分解为三个向量:
a 1 = [ 1 2 3 ] a1= \left[ \begin{matrix} 1 & 2 & 3 \\ \end{matrix} \right] a1=[123]
a 2 = [ 4 5 6 ] a2= \left[ \begin{matrix} 4& 5 & 6 \\ \end{matrix} \right] a2=[456]
a 3 = [ 7 8 9 ] a3= \left[ \begin{matrix} 7& 8 & 9 \\ \end{matrix} \right] a3=[789]
所以事实上,矩阵就是一群 变量

矩阵乘法

矩阵乘法的前提是第一个矩阵的列等于第二个矩阵的行
产生的新矩阵的 第i行第j列的值 等于 第一个矩阵的第i行的向量 乘上 第二个矩阵的第j列向量
如图,这是两个矩阵a,b

a = [ a b c d e f ] b = [ g h i j k l ] a= \left[ \begin{matrix} a & b & c \\ d & e & f \end{matrix} \right] b= \left[ \begin{matrix} g & h\\ i & j\\ k & l \end{matrix} \right] a=[adbecf]b= gikhjl
那么生成的矩阵c则为
c = [ a ∗ g + b ∗ i + c ∗ k a ∗ h + b ∗ i + c ∗ l d ∗ g + e ∗ i + f ∗ k d ∗ h + e ∗ j + f ∗ l ] c= \left[ \begin{matrix} a*g+b*i+c*k & a*h+b*i+c*l\\ d*g+e*i+f*k & d*h+e*j+f*l\\ \end{matrix} \right] c=[ag+bi+ckdg+ei+fkah+bi+cldh+ej+fl]

h = s i n β ∣ n ⃗ ∣ h=sin\beta|\vec{n}| h=sinβn
想象一个平行四边形
这个四边形底边上的高等于底边与斜边夹角的sin乘上斜边的长度(斜边向量的模)

如果接下来还学习到了新的向量知识,我还会持续更新
点个收藏8!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值