网络中的网络(NiN)
LeNet、AlexNet和VGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的标准进行处理,AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。或者,可以想象再这个过程的早期使用全连接层。然而,若使用了全连接层,可能会完全放弃表征的空间结构,网络中的网络(NiN)提供了一个非常简单的解决方案:再每个像素的通道上分别使用多层感知机
1 - NiN块
卷积层的输入和输出由四维张量组成,张量的每个轴分别对应样本、通道、高度和宽度。另外,全连接层的输入和输出通常是分别对应于样本和特征的二维张量。NiN的想法是在每个像素位置(针对每个高度和宽度)应用一个全连接层。若我们将权重连接导每个空间位置,我们可以将其视为1 * 1卷积层,或作为在每个像素位置上独立作用的全连接层。从另一个角度看,即将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)
图7.3.1说明了VGG和NiN及它们的块之间主要架构差异。NiN块以一个普通卷积层开始,后面是两个1 * 1的卷积层。这两个1 * 1卷积层充当带有ReLU激活函数的逐像素全连接层。第一层的卷积窗口形状通常由用户设置,随后的卷积窗口形状固定为1 * 1
import torch
from torch import nn
from d2l import torch as d2l
def nin_block(in_channels,out_channels,kernel_size,strides,padding):
return nn.Sequential(
nn.Conv2d(in_channels,out_channels,kernel_size,strides,padding),nn.ReLU(),
nn.Conv2d(out_channels,out_channels,kernel_size=1),nn.ReLU(),
nn.Conv2d(out_channels,out_channels,kernel_size=1),nn.ReLU())
2 - NiN模型
最初的NiN网络是在AlexNet后不久提出的,显然从中得到了一些启示。NiN使用窗口形状为11 * 11、5 * 5和3 * 3的卷积层,输出通道数量与AlexNet中的相同。每个NiN块后有一个最大汇聚层,汇聚窗口形状为3 * 3,步幅为2
NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。相反,NiN使用一个NiN块,其输出通道数等于标签类别数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率(logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而在实践中,这种设计会增加训练模型的时间
net = nn.Sequential(
nin_block(1,96,kernel_size=11,strides=4,padding=0),
nn.MaxPool2d(3,stride=2),
nin_block(96,256,kernel_size=5,strides=1,padding=2),
nn.MaxPool2d(3,stride=2),
nin_block(256,384,kernel_size=3,strides=1,padding=1),
nn.MaxPool2d(3,stride=2),
nn.Dropout(0.5),
# 标签类别数是10
nin_block(384,10,kernel_size=3,strides=1,padding=1),
nn.AdaptiveAvgPool2d((1,1)),
# 将四维的输出转成二维的输出,其形状为(批量大小,10)
nn.Flatten()
)
我们创建一个数据样本来查看每个块的输出形状
X = torch.rand(size=(1,1,224,224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape: torch.Size([1, 96, 54, 54])
MaxPool2d output shape: torch.Size([1, 96, 26, 26])
Sequential output shape: torch.Size([1, 256, 26, 26])
MaxPool2d output shape: torch.Size([1, 256, 12, 12])
Sequential output shape: torch.Size([1, 384, 12, 12])
MaxPool2d output shape: torch.Size([1, 384, 5, 5])
Dropout output shape: torch.Size([1, 384, 5, 5])
Sequential output shape: torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape: torch.Size([1, 10, 1, 1])
Flatten output shape: torch.Size([1, 10])
3 - 训练模型
和以前一样,我们使用Fashion-MNIST来训练模型,训练NiN与训练AlexNet、VGG时相似
lr,num_epochs,batch_size = 0.1,10,128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-c6hrNX99-1663511026960)(https://yingziimage.oss-cn-beijing.aliyuncs.com/img/202209182213460.svg)]
4 - 小结
- NiN使用由一个卷积层和多个1 * 1卷积层组成的块,该块可以在卷积神经网络中使用,以允许更多的像素非线性
- NiN去除了容易造成过拟合的全连接层,将它们替换为全局平均汇聚层(即在所以位置上进行求和)。该汇聚层通道数量为所需的输出数量(例如,Fashion-MNIST的输出为10)
- 移除全连接层可减少过拟合,同时显著减少NiN的参数
- NiN的设计影响许多后续卷积神经网络的设计