365深度学习基础营:P5周 Pytorch实现运动鞋识别

  • 🍨 本文為🔗365天深度學習訓練營 中的學習紀錄博客
  • 🍖 原作者:K同学啊 | 接輔導、項目定制

    一  我的环境

  • 电脑:Dell Inspire 7000 i7 9750H

    操作系统:Windows 11

    显卡:NVIDIA GTX 1650 4G

    语言环境:Python 3.11.0

    开发工具:Jupyter Notebook 6.5.4

    深度学习环境:Pytorch 2.2.2

  • 二 开发过程

  • 1. 设置GPU

  • import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    import torchvision
    from torchvision import transforms, datasets
    
    import os,PIL,pathlib
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    device

    2. 导入数据

  • import os,PIL,random,pathlib
    
    data_dir = './Data/'
    data_dir = pathlib.Path(data_dir)
    
    data_paths  = list(data_dir.glob('*'))
    classeNames = [str(path).split("\\")[1] for path in data_paths]
    
    # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
    train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        # transforms.RandomHorizontalFlip(), # 随机水平翻转
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    
    test_transform = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    
    train_dataset = datasets.ImageFolder("./Data/train/",transform=train_transforms)
    test_dataset  = datasets.ImageFolder("./Data/test/",transform=train_transforms)

    3. 划分数据集

  • batch_size = 16
    
    train_dl = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=1)
    test_dl = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=batch_size,
                                              shuffle=True,
                                              num_workers=1)
    
    for X, y in test_dl:
        print("Shape of X [N, C, H, W]: ", X.shape)
        print("Shape of y: ", y.shape, y.dtype)
        break

    二、构建简单的CNN网络

  • import torch.nn.functional as F
    
    class Model(nn.Module):
        def __init__(self):
            super(Model, self).__init__()
            self.conv1=nn.Sequential(
                nn.Conv2d(3, 12, kernel_size=5, padding=0), # 12*220*220
                nn.BatchNorm2d(12),
                nn.ReLU())
            
            self.conv2=nn.Sequential(
                nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216
                nn.BatchNorm2d(12),
                nn.ReLU())
            
            self.pool3=nn.Sequential(
                nn.MaxPool2d(2))                              # 12*108*108
            
            self.conv4=nn.Sequential(
                nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104
                nn.BatchNorm2d(24),
                nn.ReLU())
            
            self.conv5=nn.Sequential(
                nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100
                nn.BatchNorm2d(24),
                nn.ReLU())
            
            self.pool6=nn.Sequential(
                nn.MaxPool2d(2))                              # 24*50*50
    
            self.dropout = nn.Sequential(
                nn.Dropout(0.2))
            
            self.fc=nn.Sequential(
                nn.Linear(24*50*50, len(classeNames)))
            
        def forward(self, x):
            
            batch_size = x.size(0)
            x = self.conv1(x)  # 卷积-BN-激活
            x = self.conv2(x)  # 卷积-BN-激活
            x = self.pool3(x)  # 池化
            x = self.conv4(x)  # 卷积-BN-激活
            x = self.conv5(x)  # 卷积-BN-激活
            x = self.pool6(x)  # 池化
            x = self.dropout(x)
            x = x.view(batch_size, -1)  # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
            x = self.fc(x)
           
            return x
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print("Using {} device".format(device))
    
    model = Model().to(device)
    print(model)
    
    for name, param in model.named_parameters():
        print(f"Layer: {name} | Size: {param.size()} | Total params: {param.numel()}")
    
    

    三、 训练模型

  • 1. 编写训练函数

  • # 训练循环
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)  # 训练集的大小
        num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
    
        train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
        
        for X, y in dataloader:  # 获取图片及其标签
            X, y = X.to(device), y.to(device)
            
            # 计算预测误差
            pred = model(X)          # 网络输出
            loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
            
            # 反向传播
            optimizer.zero_grad()  # grad属性归零
            loss.backward()        # 反向传播
            optimizer.step()       # 每一步自动更新
            
            # 记录acc与loss
            train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
                
        train_acc  /= size
        train_loss /= num_batches
    
        return train_acc, train_loss

    2. 编写测试函数

  • def test (dataloader, model, loss_fn):
        size        = len(dataloader.dataset)  # 测试集的大小
        num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
        test_loss, test_acc = 0, 0
        
        # 当不进行训练时,停止梯度更新,节省计算内存消耗
        with torch.no_grad():
            for imgs, target in dataloader:
                imgs, target = imgs.to(device), target.to(device)
                
                # 计算loss
                target_pred = model(imgs)
                loss        = loss_fn(target_pred, target)
                
                test_loss += loss.item()
                test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
        test_acc  /= size
        test_loss /= num_batches
    
        return test_acc, test_loss

    3. 设置动态学习率

  • def adjust_learning_rate(optimizer, epoch, start_lr):
        # 每 2 个epoch衰减到原来的 0.92
        lr = start_lr * (0.92 ** (epoch // 2))
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
    
    learn_rate = 1e-4 # 初始学习率
    optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

    4. 正式训练

  • loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
    epochs     = 40
    
    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []
    
    for epoch in range(epochs):
        # 更新学习率(使用自定义学习率时使用)
        adjust_learning_rate(optimizer, epoch, learn_rate)
        
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
        # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
        
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
        
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
        
        # 获取当前的学习率
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
        print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                              epoch_test_acc*100, epoch_test_loss, lr))
    print('Done')

    四、 运行截图

  • 五、 个人总结

  • 这次的运行不太复杂。第一次遇到了cuda out of memory的问题。没办法,在外面只能用笔记本,4G的显存有点吃力。
  • 把batch size从32调整到64,问题解决。
  • 而且训练结果最高准确率达到了88.2%,还是不错的。
  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
要学习使用PyTorch进行雷达信号识别深度学习,你可以按照以下步骤进行: 1. 了解PyTorch:首先,你需要了解PyTorch的基本知识,包括张量操作、自动求导和神经网络模块等。你可以阅读官方文档、教程和示例代码来获得更多信息。 2. 学习深度学习基础知识:在开始使用PyTorch进行雷达信号识别之前,建议你先学习一些深度学习基础知识,包括卷积神经网络(CNN)、循环神经网络(RNN)和注意力机制等。这些知识将帮助你理解和设计模型。 3. 准备数据集:在进行深度学习任务之前,你需要准备一个适合的数据集。对于雷达信号识别,你可以收集或者获取一个包含雷达信号和对应标签(例如目标类别)的数据集。 4. 构建模型:使用PyTorch构建深度学习模型是非常方便的。你可以使用PyTorch提供的各种模块和函数来构建卷积神经网络(CNN)或其他类型的模型,如循环神经网络(RNN)。根据你的任务需求,选择适当的模型结构。 5. 训练模型:使用准备好的数据集,将数据输入到模型中进行训练。你可以使用PyTorch提供的优化器(如SGD、Adam等)和损失函数(如交叉熵损失)来定义训练过程。通过迭代优化模型参数,使模型能够更好地拟合数据。 6. 评估和调整模型:在训练完成后,你需要对模型进行评估。使用测试集或交叉验证等方法来评估模型的性能,并进行调整以提高模型的准确性和泛化能力。 7. 部署和应用模型:一旦你对模型的性能满意,你可以将其部署到实际应用中。你可以使用PyTorch提供的工具将模型保存为文件,并在需要时加载和使用模型。 通过以上步骤,你可以学习并使用PyTorch进行雷达信号识别深度学习任务。记得不断学习和实践,提升自己在深度学习领域的能力!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值