Transformer模型的训练后剪枝方法

该文介绍了一种针对Transformer模型的训练后剪枝方法,通过Fisher信息的Mask搜索、重排和微调算法,实现了高效压缩,减少了FLOPS并保持了精度。在BERT-base和DistilBERT上,压缩比例达2x,推理速度提升1.56x,精度损失小于1%,训练后剪枝只需3分钟,压缩过程轻量且资源友好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Paper地址:https://arxiv.org/abs/2204.09656

GitHub链接:https://github.com/WoosukKwon/retraining-free-pruning

前言

剪枝是一种经典的模型压缩方法,包括非结构剪枝、结构剪枝,它通过减少模型的冗余参数、以达到降低模型计算复杂度的目的。传统剪枝的实现方式包括训练感知方式(如Network Slimming、SFP、Taylor-prune等)与结构搜索方式(如NetAdapt、AMC等),包含三个阶段,即模型预训练、模型剪枝、模型重训练。因此传统剪枝的压缩成本相对较高,依赖训练资源、且训练的时间开销相对较高。

为了避免较重的训练开销,近年来训练后剪枝逐渐成为研究热点。类似于Post-training量化,仅需少量无标注数据的校准(特征对齐、最小化重建误差等校准方法),通过训练后压缩便能获得较好的压缩效果,且压缩成本可控(对训练资源的依赖较轻、时间代价也较低)。

Transformer模型因其特殊的模型结构(MHA+FFN),本文提出了针对性的训练后结构剪枝方法:1)基于Fisher信息设计Mask搜索算法(Mask search),寻找重要性最低的Attention heads或FFN neurons;2)通过Mask重排算法(Mask rearrangement),决定最终的(0-1取值)的剪枝Mask;3)基于少量无标注数据的知识蒸馏实现Mask微调(Mask tuning),获得Soft-mask以保持剪枝后模型的精度。

最终,针对BERT-base与DistilBERT,通过本文提出的训练后剪枝方法能够实现有效的结构剪枝,在GLUE与SQuAD数据集上,能够实现2x的FLOPS降解、1.56

### 关于面向视觉Transformer剪枝方法研究 #### 剪枝技术概述 剪枝是一种模型压缩和加速的技术,旨在移除神经网络中的冗余参数或结构,在不显著降低性能的情况下减少计算成本。对于Vision Transformers (ViTs),剪枝可以应用于注意力机制、多头自注意力模块以及前馈网络部分。 #### 面向Visual Transformer的特定剪枝策略 针对Vision Transformers的独特架构特点,研究人员提出了多种有效的剪枝方案: - **基于重要性的权重剪枝** 这种方法通过评估各个连接的重要性来决定哪些应该被保留下来。通常会利用梯度信息或者其他衡量标准如L1范数来进行筛选[^1]。 - **结构化剪枝** 不同于随机删除单个权值,此方式更倾向于去除整个通道或者层内的单元组。这有助于保持硬件友好的稀疏模式并简化部署过程。 - **动态稀疏训练** 允许网络在训练期间自然形成稀疏性,而不是事后施加固定的剪裁比例。这种方式能够更好地适应不同任务需求下的最优配置。 ```python import torch.nn.utils.prune as prune def apply_pruning(model, amount=0.2): # 对线性层应用全局统一的比例修剪 parameters_to_prune = ( (module, 'weight') for name, module in model.named_modules() if isinstance(module, torch.nn.Linear) ) prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=amount, ) # 使用示例 apply_pruning(vision_transformer_model) ``` #### 参考资源链接 为了深入了解这一领域的工作成果和技术细节,建议查阅以下论文及开源项目: - MPViT: Multi-Path Vision Transformer for Dense Prediction paper | code
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值