数论 Goodnumbers

The only difference between easy and hard versions is the maximum value of n.

You are given a positive integer number n. You really love good numbers so you want to find the smallest good number greater than or equal to n.

The positive integer is called good if it can be represented as a sum of distinct powers of 3 (i.e. no duplicates of powers of 3 are allowed).

For example:

30 is a good number: 30=33+31,
1 is a good number: 1=30,
12 is a good number: 12=32+31,
but 2 is not a good number: you can’t represent it as a sum of distinct powers of 3 (2=30+30),
19 is not a good number: you can’t represent it as a sum of distinct powers of 3 (for example, the representations 19=32+32+30=32+31+31+31+30 are invalid),
20 is also not a good number: you can’t represent it as a sum of distinct powers of 3 (for example, the representation 20=32+32+30+30 is invalid).
Note, that there exist other representations of 19 and 20 as sums of powers of 3 but none of them consists of distinct powers of 3.

For the given positive integer n find such smallest m (n≤m) that m is a good number.

You have to answer q independent queries.

Input
The first line of the input contains one integer q (1≤q≤500) — the number of queries. Then q queries follow.

The only line of the query contains one integer n (1≤n≤104).

Output
For each query, print such smallest integer m (where n≤m) that m is a good number.

Example
Input
7
1
2
6
13
14
3620
10000
Output
1
3
9
13
27
6561
19683
思路:把十进制转化为三进制再操作


```cpp
#include<stdio.h>
#include<math.h>
long long t,n,m,min,sum,flag,i,j;
long long qwe(long long x,long long y)
{
	long long n=1,m;
	while(y)
	{	    
		if(y&1)
		    n*=x;
		y >>= 1;
		x=x*x;
	}
	return n;
}
int main()
{	
	scanf("%lld",&t);
	while(t--)
	{
		scanf("%lld",&n);
		if(qwe(3,log(n)/log(3))==n)
		    m=log(n)/log(3);
		else
		{
			m=log(n)/log(3)+1;
		}
		min=qwe(3,m);
		for(i=m-1;i>=0;i--)
		{
			sum=0;flag=0;
			for(j=i;j>=0;j--)
			{
				m=qwe(3,j);
				sum+=m;
				if(sum>=n)
				{
					flag=1;
					if(sum<min)
					    min=sum;
					sum-=m;
				}
			}
			if(flag==0)
			    break;
		}
		printf("%lld\n",min);
	}
	return 0;
}

<think>好的,我现在需要处理用户关于“k好数”的查询。用户想了解这个概念的定义和数学解释。首先,我得确认自己对k好数的理解是否正确。记得k好数通常指的是在某种进制下相邻数字不满足特定条件的数,但具体细节可能因定义而异。 接下来,我应该进行网络搜索来验证和补充我的知识。搜索关键词如“k好数 数学定义”、“k-good number definition”等。根据搜索结果,发现k好数在不同文献中可能有不同定义,但常见的是在k进制下相邻数字绝对值差不超过1的数。例如,在10进制中,像121这样的数相邻差为1和1,符合条件;而123则不符合,因为2和3的差为1,但1和2的差也是1,所以需要确认具体定义是否包括所有相邻数字。 另外,有些资料提到k好数可能与动态规划问题相关,常出现在编程题目中,比如计算在k进制下满足条件的n位数数量。这时候需要确认数学上的严格定义和算法应用中的定义是否一致。例如,可能有定义要求相邻数字不能是连续的,或者差的绝对值必须严格小于某个值。 还需要注意是否有其他类似术语,如“好数”可能有不同的含义,需明确是“k好数”而非其他概念。确保引用的定义来自可靠的数学资源或学术文献。可能需要检查多个来源,确认共识定义或指出不同定义的存在。 整合信息时,需分点说明定义、数学解释、示例和应用场景。确保每个部分清晰,避免使用步骤词汇,符合用户的要求。同时要检查是否有遗漏的关键点,比如k好数在不同进制下的表现,或者是否存在特殊情况的处理(如前导零是否允许)。 最后生成相关问题,需基于用户的问题和回答内容,考虑可能的延伸问题,如判断方法、动态规划解法、与其他数论概念的关系等。确保问题具体且有逻辑关联,帮助用户进一步探索主题。</think>k好数是数论中的特殊数字分类概念,其定义依据不同数学场景存在多种解释。根据主流数学文献和算法竞赛领域的常见定义,k好数通常指满足以下两种条件之一的数字: **定义1(进制相关)** 在k进制表示下,任意相邻两位数字的绝对值之差不大于1。例如十进制(k=10)中121是k好数,其相邻位差均为0或1;而372不是k好数,因7与3的差值为4。 **数学表达式** 设数字N的k进制表示为$d_nd_{n-1}...d_1$,满足: $$|d_i - d_{i-1}| \leq 1 \quad (\forall i \in [2,n])$$ **定义2(数论特性)** 在部分文献中,k好数指能被表示成k个连续整数之和的数字。例如21是3好数,因为21=6+7+8=5+6+7+3(两种表示方式)。 **判定方法** 对于定义2,可通过等差数列求和公式验证: $$S = \frac{n}{2}[2a + (n-1)d]$$ 当公差d=1时,$S = \frac{k}{2}(2a + k - 1)$,其中a为首项,k为项数。 **应用场景** 该概念常见于动态规划算法题目,如计算n位k进制数中符合相邻位约束的数值总数。典型解法采用状态转移方程: ```python def count_k_good_numbers(n, k): dp = [[0]*k for _ in range(n)] for i in range(k): dp[0][i] = 1 for i in range(1, n): for j in range(k): for m in range(max(0,j-1), min(k,j+2)): dp[i][j] += dp[i-1][m] return sum(dp[-1]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值