题意
传送门 POJ 3904
题解
总的四元组个数为 C N 4 C_{N}^{4} CN4,需要减去包含大于一的因子的四元组数量。 O ( N N ) O(N\sqrt N) O(NN) 对编号数组各个元素进行因数分解,统计包含约数 i i i 的元素个数,记为 c n t [ i ] cnt[i] cnt[i]。那么包含约数 i i i 的四元组数量为 C c n t [ i ] 4 C_{cnt[i]}^{4} Ccnt[i]4。
根据容斥原理,首先减去包含一个素因子的四元组数量,接着加上包含两个素因子的四元组数量…容易观察到,约数为
i
i
i 的四元组对答案的贡献为其莫比乌斯函数乘以四元组数量。设约数为
i
i
i 的莫比乌斯函数为
m
u
[
i
]
mu[i]
mu[i],则答案为
∑
i
为
编
号
数
组
某
个
元
素
的
因
子
(
m
u
[
i
]
×
C
c
n
t
[
i
]
4
)
\sum\limits_{i为编号数组某个元素的因子}\left(mu[i]\times C_{cnt[i]}^{4}\right)
i为编号数组某个元素的因子∑(mu[i]×Ccnt[i]4)
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn = 10005;
int N, cnt[maxn];
ll C[maxn];
int mu[maxn], prime[maxn], minp[maxn];
void sieve()
{
int p = 0;
mu[1] = 1;
for (int i = 2; i < maxn; ++i)
{
if (!minp[i])
minp[i] = i, prime[p++] = i, mu[i] = -1;
for (int j = 0; j < p && prime[j] * i < maxn; ++j)
{
int k = prime[j] * i;
minp[k] = prime[j];
if (minp[i] == prime[j])
{
mu[k] = 0;
break;
}
else
mu[k] = -mu[i];
}
}
}
ll calc(int n)
{
ll res = 1;
for (int i = 0; i < 4; ++i)
res *= n - i;
return res / 24;
}
int main()
{
sieve();
for (int i = 4; i < maxn; ++i)
C[i] = calc(i);
while (~scanf("%d", &N))
{
memset(cnt, 0, sizeof(cnt));
int lim = 0;
for (int i = 0, x; i < N; ++i)
{
scanf("%d", &x);
lim = max(lim, x);
for (int j = 1; j * j <= x; ++j)
if (x % j == 0)
{
++cnt[j];
if (x / j != j)
++cnt[x / j];
}
}
ll res = 0;
for (int i = 1; i <= lim; ++i)
res += mu[i] * C[cnt[i]];
printf("%lld\n", res);
}
return 0;
}
数学与编程:计算组合计数问题
这篇博客探讨了如何使用数学和编程解决组合计数问题,具体涉及POJ3904题目解析。文章介绍了四元组的计算方法,并通过容斥原理计算包含特定因子的四元组数量。通过因数分解和莫比乌斯函数,实现了O(N√N)的时间复杂度算法。
1万+

被折叠的 条评论
为什么被折叠?



