POJ 3904 容斥原理

数学与编程:计算组合计数问题
这篇博客探讨了如何使用数学和编程解决组合计数问题,具体涉及POJ3904题目解析。文章介绍了四元组的计算方法,并通过容斥原理计算包含特定因子的四元组数量。通过因数分解和莫比乌斯函数,实现了O(N√N)的时间复杂度算法。
题意

传送门 POJ 3904

题解

总的四元组个数为 C N 4 C_{N}^{4} CN4,需要减去包含大于一的因子的四元组数量。 O ( N N ) O(N\sqrt N) O(NN ) 对编号数组各个元素进行因数分解,统计包含约数 i i i 的元素个数,记为 c n t [ i ] cnt[i] cnt[i]。那么包含约数 i i i 的四元组数量为 C c n t [ i ] 4 C_{cnt[i]}^{4} Ccnt[i]4

根据容斥原理,首先减去包含一个素因子的四元组数量,接着加上包含两个素因子的四元组数量…容易观察到,约数为 i i i 的四元组对答案的贡献为其莫比乌斯函数乘以四元组数量。设约数为 i i i 的莫比乌斯函数为 m u [ i ] mu[i] mu[i],则答案为
∑ i 为 编 号 数 组 某 个 元 素 的 因 子 ( m u [ i ] × C c n t [ i ] 4 ) \sum\limits_{i为编号数组某个元素的因子}\left(mu[i]\times C_{cnt[i]}^{4}\right) i(mu[i]×Ccnt[i]4)

#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn = 10005;
int N, cnt[maxn];
ll C[maxn];
int mu[maxn], prime[maxn], minp[maxn];

void sieve()
{
    int p = 0;
    mu[1] = 1;
    for (int i = 2; i < maxn; ++i)
    {
        if (!minp[i])
            minp[i] = i, prime[p++] = i, mu[i] = -1;
        for (int j = 0; j < p && prime[j] * i < maxn; ++j)
        {
            int k = prime[j] * i;
            minp[k] = prime[j];
            if (minp[i] == prime[j])
            {
                mu[k] = 0;
                break;
            }
            else
                mu[k] = -mu[i];
        }
    }
}

ll calc(int n)
{
    ll res = 1;
    for (int i = 0; i < 4; ++i)
        res *= n - i;
    return res / 24;
}

int main()
{
    sieve();
    for (int i = 4; i < maxn; ++i)
        C[i] = calc(i);
    while (~scanf("%d", &N))
    {
        memset(cnt, 0, sizeof(cnt));
        int lim = 0;
        for (int i = 0, x; i < N; ++i)
        {
            scanf("%d", &x);
            lim = max(lim, x);
            for (int j = 1; j * j <= x; ++j)
                if (x % j == 0)
                {
                    ++cnt[j];
                    if (x / j != j)
                        ++cnt[x / j];
                }
        }
        ll res = 0;
        for (int i = 1; i <= lim; ++i)
            res += mu[i] * C[cnt[i]];
        printf("%lld\n", res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值