本博客来自CSDN:http://blog.csdn.net/niuwei22007/article/details/49406355
本篇介绍的内容主要用于NLP(Nature Language Process, 自然语言处理)。Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果,但就目前而言,Deep Learning 在 NLP 领域中的研究已经将高深莫测的人类语言撕开了一层神秘的面纱。本篇内容主要就是用来做词向量的映射与训练。
一、Embedding
keras.layers.embeddings.Embedding(input_dim,output_dim, init='uniform', input_length=None, weights=None, W_regularizer=None, W_constraint=None, mask_zero=False)
将正整数转换为固定size的denses向量。比如[[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]
input shape: 2维tensor,shape为(nb_samples,sequence_length)
output shape: 3维tensor,shape为(nb_samples,sequence_length, output_dim)。
参数: