基于Theano的深度学习(Deep Learning)框架Keras学习随笔-17-Embedding Layers

本文介绍了Keras框架下用于自然语言处理的Embedding层和WordContextProduct层。Embedding层将词汇转换为固定维度的稠密向量,而WordContextProduct层则计算单词与上下文单词的内积,用于表示它们共现的概率。通过这两个层,可以训练词向量并进行NLP任务。
摘要由CSDN通过智能技术生成

        本博客来自CSDN:http://blog.csdn.net/niuwei22007/article/details/49406355

        本篇介绍的内容主要用于NLP(Nature Language Process, 自然语言处理)。Deep Learning 算法已经在图像和音频领域取得了惊人的成果,但是在 NLP 领域中尚未见到如此激动人心的结果,但就目前而言,Deep Learning 在 NLP 领域中的研究已经将高深莫测的人类语言撕开了一层神秘的面纱。本篇内容主要就是用来做词向量的映射与训练。

一、Embedding

keras.layers.embeddings.Embedding(input_dim,output_dim, init='uniform', input_length=None, weights=None, W_regularizer=None, W_constraint=None, mask_zero=False)

        将正整数转换为固定size的denses向量。比如[[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]

        input shape: 2维tensor,shape为(nb_samples,sequence_length)

        output shape: 3维tensor,shape为(nb_samples,sequence_length, output_dim)

        参数

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值