探空图的绘制

import numpy as np
import matplotlib.pyplot as plt
# MetPy中用于绘制探空图的类
from metpy.plots import SkewT
from metpy.units import units
from metpy.calc import lcl
from metpy.calc import parcel_profile
# 探空数据,原始的np.ndarray数组需要带上单位,转换为带单位的数据
# 气压层
p = np.array([1000, 925, 850, 700, 600, 500, 450, 400, 300, 250]) * units.hPa
# 气压层对应温度
t = np.array([4, 8, 3, -11, -21, -26, -33, -38, -55, -60]) * units.degC
# 气压层对应露点
td = np.array([-8, -9, -14, -18, -25, -34, -38, -43, -61, -67]) * units.degC
# 气压层对应风的U分量
u = np.array([-0.39, 0.11, 3.1, 10.7, 16.61, 24.0, 20.31, 33.43, 49.32, 59.21]) * units('m/s')
# 气压层对应风的V分量
v = np.array([-0.57, -0.75, -1.09, -0.79, -0.48, -0.04, -0.26, 0.96, 2.87, 4.14]) * units('m/s')
# 计算气块绝热抬升参数
prof = parcel_profile(p, t[0], td[0]).to('degC')
# 用最底层气压(这里是1000hPa)、温度和露点,计算抬升凝结高度对应的气压和温度
lcl_pressure, lcl_temperature = lcl(p[0], t[0], td[0])
fig = plt.figure(figsize=(8, 7))
# 用于绘制探空图的绘图实例
skew = SkewT(fig)
# 绘制气块绝热抬升路径
skew.plot(p, prof, 'k')
# 在图上标出抬升凝结高度和对应温度所在的点
skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')
# 绘制CIN阴影部分
skew.shade_cin(p, t, prof)
# 绘制CAPE阴影部分
skew.shade_cape(p, t, prof)
# 绘制0℃等温线
skew.ax.axvline(0, color='c', linestyle='--', linewidth=1)
# 环境温度垂直廓线
skew.plot(p, t, 'r')
# 环境露点垂直廓线
skew.plot(p, td, 'g')
# 高度层对应水平风场(原始风向杆等级划分不适用于国内标准)
barb_increments = {'half': 2, 'full': 4, 'flag': 20}
skew.plot_barbs(p, u, v, barb_increments=barb_increments)
# 绘制干绝热线
skew.plot_dry_adiabats(t0=np.arange(233, 533, 10) * units.K, alpha=0.5, color='orangered', linewidth=0.7)
# 绘制湿绝热线
skew.plot_moist_adiabats(t0=np.arange(233, 400, 5) * units.K, alpha=0.5, color='tab:green', linewidth=0.7)
# 绘制混合比线
skew.plot_mixing_lines(pressure=np.arange(1000, 99, -20) * units.hPa, linestyle='dotted', color='tab:blue', linewidth=0.7)
#设置Y轴(高度层)范围
skew.ax.set_ylim(1000, 250)
#设置X轴(温度)范围
skew.ax.set_xlim(-40, 50)
plt.show()

### 使用MATLAB绘制气象探空 #### 创建和准备数据 为了在MATLAB中绘制气象探空,首先需要准备好相应的气球探测数据。这类数据通常包括高度、温度、湿度以及风向和风速等参数。假设已经拥有了这样的数据文件,并将其导入到了工作空间。 ```matlab % 假设读取了一个名为 sounding_data.mat 的文件 load('sounding_data.mat'); % 加载包含探空气象观测数据的 .mat 文件[^1] height = data.height; % 高度 (单位:米) temperature = data.temperature; % 温度 (单位:摄氏度) dewpoint = data.dewpoint; % 露点温度 (单位:摄氏度) wind_speed = data.wind_speed;% 风速 (单位:m/s) wind_direction = data.wind_direction; % 风向 (角度制, 单位:度)[^2] ``` #### 绘制温湿曲线 接下来利用 `plot` 函数来分别表示随高度变化而改变的气温与露点温度: ```matlab figure; hold on; % 绘制温度曲线 plot(temperature, height, '-r', 'LineWidth', 2); % 绘制露点温度曲线 plot(dewpoint, height, '--b', 'LineWidth', 2); xlabel('Temperature (\circC)'); ylabel('Height (m)'); title('Sounding Data Plot'); legend({'Temperature', 'Dew Point'},'Location','BestOutside'); grid minor; axis tight; hold off; ``` #### 添加风矢量层 对于风场信息,则可以通过 `quiver` 或者专门针对此类情况设计好的函数如 `skewt` 来显示。这里采用简单的箭头形式示意风的方向及其强度: ```matlab figure; hold all; % 计算水平分速度 u 和 v 分量 u = wind_speed .* sind(wind_direction); v = wind_speed .* cosd(wind_direction); % 绘制风矢量 quiver(zeros(size(u)), height, u, zeros(size(v)), ... 'AutoScaleFactor', 0.8,... 'MaxHeadSize', 0.5,... 'Color', [0.3 0.3 0.3]); set(gca,'YDir','reverse') xlim([-max(abs([u(:);v(:)])) max(abs([u(:);v(:)]))]); ylim(flipud(get(gca,'YLimits'))); xlabel('Wind Vector Components'); ylabel('Height (m)'); title('Wind Profile from Sounding Data'); hold off; ``` 上述过程展示了如何基于给定的高度-时间序列资料,在 MATLAB 中构建一张完整的气象探空表。这其中包括了温度、露点两条主要特征线加上代表各层次平均风况的小箭头标记[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值