cross-env 使用教程

本系列是我的常用 koa 中间件使用笔记,防止忘记使用方法而作记录

 cross-env可以运行跨平台设置和使用环境变量的脚本。

 

使用方式

设置npm脚本:

  "scripts": {
    "dev": "cross-env NODE_ENV=dev node app.js"
  },

这样使用设置的环境变量

//app.js
console.log(process.env.NODE_ENV); //输出dev

 

### Jupyter Lab 中安装 Keras 的教程使用指南 #### 安装 Miniforge 和 TensorFlow 为了在 Jupyter Lab 中顺利安装并使用 Keras,建议先通过 Miniforge 来管理环境。Miniforge 是 Conda 的轻量级发行版,适合快速设置 Python 开发环境。 ```bash # 下载并安装 Miniforge wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh bash Miniforge3-Linux-x86_64.sh ``` 创建一个新的 conda 环境,并激活该环境: ```bash # 创建名为 tensorflow_env 的新环境 conda create --name tensorflow_env python=3.9 -y conda activate tensorflow_env ``` 接着,在此环境中安装 TensorFlow 及其依赖项: ```bash # 安装 TensorFlow 和其他必要的库 pip install tensorflow keras matplotlib pandas scikit-learn jupyterlab ``` #### 启动 Jupyter Lab 并验证安装 完成上述操作后,可以通过命令行启动 Jupyter Lab: ```bash jupyter lab ``` 打开浏览器访问 http://localhost:8888/lab 即可看到 Jupyter Lab 用户界面[^1]。 #### 使用 Keras 进行模型构建和训练 下面是一个简单的例子来展示如何利用 Keras 构建神经网络分类器: ```python import numpy as np from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.optimizers import Adam # 加载数据集 digits = load_digits() X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target) # 数据预处理 num_features = len(X_train[0]) model = Sequential([ Dense(64, activation='relu', input_shape=(num_features,)), Dropout(0.2), Dense(64, activation='relu'), Dropout(0.2), Dense(len(np.unique(y_train)), activation='softmax') ]) # 编译模型 opt = Adam(lr=0.001) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, epochs=20, batch_size=32, validation_data=(X_test, y_test)) ``` 这段代码展示了从加载数据到定义、编译再到训练一个基本的多层感知机的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值