强化学习打卡班第四五章

第四章 Policy Gradient梯度策略

在这里插入图片描述

例子

在强化学习中有 3 个组成部分:智能体(actor)、环境(environment) 和 奖励函数(reward function)

在强化学习里面,环境跟奖励函数不可控制,环境跟奖励函数是在开始学习之前,就已经事先给定的。唯一能做的事情是调整智能体里面的策略(policy),使得智能体可以得到最大的奖励。智能体里面会有一个策略,这个策略决定了智能体的行为。给定一个外界的输入,策略会输出演员现在应该要执行的行为。
在这里插入图片描述
以雅达利游戏为强化学习例子,其可以看出,
1.策略就是一个网络;
2.输入就是游戏的画面,它通常是由像素(pixels)所组成的;
3.输出就是看看说有哪些选项是你可以去执行的,输出层就有几个神经元。
4.假设你现在可以做的行为有 3 个,输出层就是有 3 个神经元。每个神经元对应到一个可以采取的行为。
5.输入一个东西后,网络就会给每一个可以采取的行为一个分数,可以当作是概率。演员就是看这个概率的分布,根据这个概率的分布来决定它要采取的行为。比如说 70% 会向左走,20% 向右走,10% 开火等等。概率分布不同,演员采取的行为就会不一样。

首先,环境是一个函数,在一场游戏里面,我们把环境输出的 ss 跟演员输出的行为 aa,把 ss 跟 aa 全部串起来, 叫做一个 Trajectory(轨迹),如下式所示。
 Trajectory  τ = { s 1 , a 1 , s 2 , a 2 , ⋯   , s t , a t } \text { Trajectory } \tau=\left\{s_{1}, a_{1}, s_{2}, a_{2}, \cdots, s_{t}, a_{t}\right\}  Trajectory τ={s1,a1,s2,a2,,st,at}
你其实可以计算某一个轨迹发生的概率,你可以计算某一个回合里面发生这样子状况的概率。
p θ ( τ ) = p ( s 1 ) p θ ( a 1 ∣ s 1 ) p ( s 2 ∣ s 1 , a 1 ) p θ ( a 2 ∣ s 2 ) p ( s 3 ∣ s 2 , a 2 ) ⋯ = p ( s 1 ) ∏ t = 1 T p θ ( a t ∣ s t ) p ( s t + 1 ∣ s t , a t ) \begin{aligned} p_{\theta}(\tau) &=p\left(s_{1}\right) p_{\theta}\left(a_{1} \mid s_{1}\right) p\left(s_{2} \mid s_{1}, a_{1}\right) p_{\theta}\left(a_{2} \mid s_{2}\right) p\left(s_{3} \mid s_{2}, a_{2}\right) \cdots \\ &=p\left(s_{1}\right) \prod_{t=1}^{T} p_{\theta}\left(a_{t} \mid s_{t}\right) p\left(s_{t+1} \mid s_{t}, a_{t}\right) \end{aligned} pθ(τ)=p(s1)pθ(a1s1)p(s2s1,a1)pθ(a2s2)p(s3s2,a2)=p(s1)t=1Tpθ(atst)p(st+1st,at)
(这里可以理解为,是一系列的条件概率,这里条件概率相关的公式都快忘差不多了,这里补上)

贝叶斯公式补充

贝叶斯公式:
P ( X j ∣ Y i ) = p ( y i ∣ x j ) p ( x i ) ∑ j = 1 n p ( y i ∣ x j ) p ( x j ) ) P(X_j | Y_i) = \frac{p(y_i|x_j)p(x_i)}{\sum_{j=1}^{n} p(y_i |x_j) p(x_j))} P(XjYi)=j=1np(yixj)p(xj))p(yixj)p(xi)

基于此,可以计算单个轨迹发生的概率。这个概率取决于两部分:
1.环境的行为 。环境的函数内部的参数或内部的规则长什么样子。 p ( s t + 1 ∣ s t , a t ) p(s_t+1∣s_t,a_t) p(st+1st,at)这一项代表的是环境,通常无法控制。
2.agent 的行为。你能控制的是 p θ ( a t ∣ s t ) p_θ(a_t∣s_t) pθ(atst)给定一个 s t s_t st,演员要采取什么样的 a t a_t at,会取决于演员的参数 θ θ θ,所以这部分是演员可以自己控制的。随着演员的行为不同,每个同样的轨迹, 它就会有不同的出现的概率。
在这里插入图片描述

奖励函数(reward function)

奖励函数根据在某一个状态采取的某一个动作,决定现在这个行为可以得到多少的分数。
在算法中,主要做的就是调整actor内部参数 θ \theta θ,使R越大越好。但由于R是一个随机变量,由动作和环境同时决定,只能计算R的期望值。即给定一组 θ \theta θ,计算 R θ R_\theta Rθ的期望是多少。
R ˉ θ = ∑ τ R ( τ ) p θ ( τ ) = E τ − p θ ( τ ) [ R ( τ ) ] \bar{R}_{\theta}=\sum_{\tau} R(\tau) p_{\theta}(\tau)=E_{\tau-p_\theta(\tau)}[R(\tau)] Rˉθ=τR(τ)pθ(τ)=Eτpθ(τ)[R(τ)]

目标就是,将期望奖励最大化。

最大化方法–梯度上升

PPO算法

从 On-policy 到 Off-policy

在讲 PPO 之前,我们先回顾下 on-policy 和 off-policy 这两种训练方法的区别。 在强化学习里面,我们要学习的就是一个 agent。

如果要学习的 agent 跟和环境互动的 agent 是同一个的话, 这个叫做on-policy(同策略)。
如果要学习的 agent 跟和环境互动的 agent 不是同一个的话, 那这个叫做off-policy(异策略)。

近端策略优化(Proximal Policy Optimization,简称 PPO) 是 policy gradient 的一个变形,它是现在 OpenAI 默认的强化学习算法。
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值