Dify+工作流,通过多模态实现发票自动识别

1. 概述

上个章节我们用Dify实现了基于本地知识库的聊天助手,本节我们通过工作流 ,可视化界面快速构建复杂的工作流和自动化流程。结合 OCR(光学字符识别)技术和工作流引擎,可以实现发票的自动识别、数据提取以及后续的审批流程。本文将详细介绍如何使用 Dify 和工作流来实现发票的自动识别与审批。

2. 需求分析
  • 发票自动识别:通过 OCR 技术,自动从扫描或拍照的发票图像中提取关键信息(如发票号码、金额、日期、供应商等)。
  • 数据验证:对提取的数据进行验证,确保其准确性和完整性。
3. 技术选型
  • OCR 引擎:使用第三方 OCR API(如 Google Cloud Vision、Tesseract、阿里云 OCR 等)来识别发票上的文字信息。
  • Dify 平台:用于构建和管理整个工作流,包括发票上传、数据提取、审批流程、通知和归档。
4. 实现步骤
4.1 设计工作流

        step1 创建应用:登录Dify,切换到工作室选项卡,点击创建空白应用

        

        step2 选择工作流,并且填写应用名称,点击“创建”

        

### Dify 文档提取器处理 Excel 文件的解决方案 当前遇到的问题在于 Dify 文档提取器默认情况下可能不具备直接解析和提取 Excel 文件内容的能力。为了克服这一局限性,可以考虑采用以下几种方法: #### 方法一:转换文件格式 将 Excel 文件预先转换为其他受支持的格式再进行上传。例如,可先将 `.xlsx` 或 `.xls` 转换成 PDF 格式,之后利用已有的 RAG Pipeline 功能来读取并索引这些文档中的文本信息[^2]。 ```bash # 使用命令行工具如 LibreOffice 进行批量转换 libreoffice --headless --convert-to pdf *.xlsx ``` #### 方法二:集成第三方库或服务 引入专门用于处理电子表格的应用程序接口(API),像 Pandas 库或者 Google Sheets API 等,它们能够有效地加载、分析以及导出 Excel 数据表的内容。这样可以在预处理阶段获取所需的数据字段,并将其作为结构化数据输入给 Dify 工作流。 ```python import pandas as pd # 加载 Excel 文件 df = pd.read_excel('example.xlsx') # 将 DataFrame 中的数据转成 JSON 字符串形式以便后续处理 json_data = df.to_json(orient='records') print(json_data) ``` #### 方法三:增强现有架构功能 如果条件允许的话,还可以尝试扩展现有的 Dify + DeepSeek 架构,在本地环境中加入额外的支持模块以实现对 Excel 的原生支持。这不仅提高了系统的兼容性和实用性,同时也增强了对于敏感资料的安全防护措施[^3]。 通过上述任一种方式都可以有效改善 Dify 对于 Excel 文件的操作能力,确保各类办公自动化流程顺利开展的同时也保护好用户的隐私权与数据主权[^1]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值