matlab超前-滞后校正

1控制系统的校正

系统性能

稳定性、准确性、快速性

动态性能-超前校正

阶跃曲线、频域(bode图)、根轨迹(增加零点-根轨迹左移稳定性提高)、PID控制(PD)

静态性能-滞后校正

阶跃曲线、频域(bode图)、根轨迹(增加极点-根轨迹右移稳定性提高)、PID控制(PI)

2系统模型

超前校正未校正系统模型:

G(s)=\frac4{s(s+2)}

超前校正:增加一对零极点,使得零点更靠近坐标原点

G(s)=\frac{18.7(s+2.9)}{s(s+2)(s+5.4)}

G(s)=\frac{41.7(s+4.41)}{s(s+2)(s+18.4)}

滞后校正未校正系统模型:

G(s)=\frac1{s(0.5s+1)(s+1)}.

滞后校正:增加一对零极点,使得极点更靠近坐标原点

G(s)=\frac{5(10s+1)}{(s^2+s)(0.5s+1)(100s+1)}

3运行效果分析

3.1未校正
num=[4];
den=[conv([1 0],[1 2])];
G=tf(num,den)
G1=feedback(G,1)
figure(1)
step(G1)
figure(2)
bode(G)
grid on

阶跃响应

伯德图

3.2 使用第一个函数进行超前校正
num=[4];
den=[conv([1 0],[1 2])];
G=tf(num,den)
G1=feedback(G,1)
num1=[18.7 18.7*2.9];
den1=conv(conv([1 0],[1 2]),[1 5.4])
G2=tf(num1,den1)
G3=feedback(G2,1)

figure(1)
step(G1,'r--',G3,'k--')
legend('原系统阶跃曲线','超前校正后的曲线')
figure(2)
bode(G,'r--',G2,'k--')
legend('原系统阶跃曲线','超前校正后的bode曲线')
figure(3)
rlocus(G)
legend('原系统根轨迹')
figure(4)
rlocus(G2)
legend('校正后根轨迹')
set(findobj('Type','line'),'LineWidth',1.6)

阶跃响应:由图可知系统阶跃响应的稳定性、准确性和快速性都有了提升。

根轨迹:超前校正增加了零点,根轨迹左偏,稳定性增加

 

 Bode图:开环增益越高,稳态误差减小,系统性能越好,即相频特性中初始值抬高。Wc增大,y值增大,即在相频特性纵坐标为0时,幅频特性曲线越高,说明系统的性能越好。

 3.3 使用第二个函数进行超前校正

与第一个系统进行对比,系统是更稳定的。增加一对零极点,使零点更靠近坐标原点,零点和极点的值越大,系统性能越好

num=[4];
den=[conv([1 0],[1 2])];
G=tf(num,den)
G1=feedback(G,1)
num1=[41.7 41.7*4.41];
den1=conv(conv([1 0],[1 2]),[1 18.4])
G2=tf(num1,den1)
G3=feedback(G2,1)

figure(1)
step(G1,'r--',G3,'k--')
legend('原系统阶跃曲线','超前校正后的曲线')
figure(2)
bode(G,'r--',G2,'k--')
legend('原系统阶跃曲线','超前校正后的bode曲线')
figure(3)
rlocus(G)
legend('原系统根轨迹')
figure(4)
rlocus(G2)
legend('校正后根轨迹')
set(findobj('Type','line'),'LineWidth',1.6)
grid on
[a1,b1,c1,d1]=margin(G)
[a2,b2,c2,d2]=margin(G2)
3.4滞后校正
num=[1];
den=conv(conv([1 0],[0.5 1]),[1 1])
G=tf(num,den)
G1=feedback(G,1)
num1=[5*10 5*1];
den1=conv(conv([1 1 0],[0.5 1]),[100 1])
G2=tf(num1,den1)
G3=feedback(G2,1)

figure(1)
step(G1,'r--',G3,'k--')
legend('原系统阶跃曲线','超前校正后的曲线')
figure(2)
bode(G,'r--',G2,'k--')
legend('原系统阶跃曲线','超前校正后的bode曲线')
figure(3)
rlocus(G)
legend('原系统根轨迹')
figure(4)
rlocus(G2)
legend('校正后根轨迹')
set(findobj('Type','line'),'LineWidth',1.6)
grid on
[a1,b1,c1,d1]=margin(G)
[a2,b2,c2,d2]=margin(G2)

阶跃响应:没有太大区别

根轨迹:滞后校正增加极点,根轨迹右偏,稳定性增加

 

 频域响应Bode图:开环增益越高,稳态误差减小,系统性能越好,即相频特性中初始值抬高,Wc增大。y值增大,即在相频特性纵坐标为0时,幅频特性曲线越高,说明系统性能越好。

 

整理自:【自控】快速搞定超前-滞后校正的原理及Matlab仿真验证_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值