omnispace的博客

专注AI,物联网,区块链,安卓以及相关安全技术

排序:
默认
按更新时间
按访问量
RSS订阅

【译】Understanding Linked Data Formats

在本文中,我们将通过检查其四种最常见的格式来探索RDF的外观:N-Triples,Turtle,JSON-LD和RDF / XML。 编辑(04/05/2019):我将本文扩展为包含JSON-LD并添加了下面的内容部分。 我原本没有包含JSON-LD,因为我从未真正使用它,但同意需要添加它才能完...

2019-05-28 18:32:41

阅读数 93

评论数 0

Contextualizing Airbnb by Building Knowledge Graph

我想你去洛杉矶旅行。 第一步是访问A irbnb.com并搜索“洛杉矶”。在后端,查询“洛杉矶”被翻译成地图上的一个区块; 此块中的可用房屋将在许多搜索结果页面中返回。 这足以让你制定旅行计划吗? 随着Airbnb逐渐走向成为端到端的旅行平台 ,我们越来越重要的是提供旅行见解,帮助人们决定何时旅...

2019-05-28 18:28:58

阅读数 53

评论数 0

【译】Deep Learning with Knowledge Graphs

上周,我在Connected Data London上就Octavian开发的方法发表了演讲,使用神经网络在知识图上执行任务。 这是来自Connected Data London的演讲录音: 在这篇文章中,我将总结那篇演讲(包括大部分幻灯片)并提供对我们影响最大的论文的链接。 要了解有关...

2019-05-28 18:26:28

阅读数 51

评论数 0

Tensorflow - Named Entity Recognition

Tensorflow - Named Entity Recognition Each folder contains a standalone, short (~100 lines of Tensorflow), main.py that implements a neural-network ...

2019-05-08 16:50:41

阅读数 117

评论数 0

用双向lstm+CRF做命名实体识别(附tensorflow代码)——NER系列(四)

这一篇文章,主要讲一下用深度学习(神经网络)的方法来做命名实体识别。现在最主流最有效的方法基本上就是lstm+CRF了。其中CRF部分,只是把转移矩阵加进来了而已,而其它特征的提取则是交由神经网络来完成。当然了,特征提取这一部分我们也可以使用CNN,或者加入一些attention机制。 接下来,...

2019-05-08 15:00:38

阅读数 396

评论数 0

用CRF做命名实体识别——NER系列(三)

在上一篇文章《用隐马尔可夫模型(HMM)做命名实体识别——NER系列(二)》中,我们使用HMM模型来做命名实体识别,将问题转化为统计概率问题,进行求解。显然,它的效果是非常有限的。 在深度学习技术火起来之前,主流的、最有效的方法,就是CRF(条件随机场)模型。本文不对CRF模型进行展开讲解,而是...

2019-05-08 14:58:58

阅读数 109

评论数 0

用隐马尔可夫模型(HMM)做命名实体识别——NER系列(二)

上一篇文章里《用规则做命名实体识别——NER系列(一)》,介绍了最简单的做命名实体识别的方法–规则。这一篇,我们循序渐进,继续介绍下一个模型——隐马尔可夫模型。 隐马尔可夫模型,看上去,和序列标注问题是天然适配的,所以自然而然的,早期很多做命名实体识别和词性标注的算法,都采用了这个模型。 这篇...

2019-05-08 14:56:56

阅读数 312

评论数 0

用规则做命名实体识别——NER系列(一)

兑现自己上一篇立下的flag,从头开始写这几个月对命名实体识别这个任务的探索历程。这是这个系列的第一篇——用规则来做命名实体识别。 1.什么是命名实体识别 命名实体识别(Named Entity Recognition,简称NER),是一个基本的NLP任务,按照传统,下面是百度百科对它的解释:...

2019-05-08 14:55:21

阅读数 115

评论数 0

小型动漫知识图谱的构建 (Python+Neo4j) (纯实践内容,基于bilibili所有正版番剧的动漫、声优、角色、类型)

数据源:bilibili所有番剧的详情页面的信息,共计3000+的番剧 (已经整理好的数据和代码下文有链接) 步骤1:抽取信息 从各个详情页面中抽取信息,比如动漫这个节点的文件,大概内容如下 这一步稍微有些麻烦的地方就是爬虫的时候数据可能会出现清理不干净的情况,比如某个name的前面或...

2019-05-05 16:49:35

阅读数 251

评论数 0

知识图谱实践篇(五):KBQA Demo

作为实践篇的最后一篇,我们将介绍如何用Python完成一个简易的问答程序。下图是demo的展示效果: 查询结果为空,回答“I don't know.”;不能理解问句,回答“I can't understand.”。本实现参考了王昊奋老师发布在OpenKG上的demo“基于REfO的KBQA实...

2019-05-05 16:29:49

阅读数 194

评论数 0

知识图谱实践篇(四):Apache jena SPARQL endpoint及推理

在上一篇我们学习了如何利用D2RQ来开启endpoint服务,但它有两个缺点: 1. 不支持直接将RDF数据通过endpoint发布到网络上。 2. 不支持推理。 这次我们介绍的Apache Jena能够解决上面两个问题。 一、Apache Jena简介 Apache Jena(后文...

2019-05-05 16:04:55

阅读数 33

评论数 0

知识图谱实践篇(二):关系数据库到RDF

上一篇文章介绍了我们所使用的数据。其实,知识图谱数据的来源主要有三个:结构化数据、半结构化数据和非结构化的数据。我们所使用的电影数据就是结构化的数据。半结构化的数据指的是数据有一定的组织形式,但较结构化数据而言更松散(属性名和属性值具有多样性,比如“生日”就有“出生日期”、“诞辰”等多种表达方式)...

2019-05-05 16:00:57

阅读数 119

评论数 0

知识图谱实践篇(一):数据准备和本体建模

对知识图谱有兴趣的读者可以关注我的知乎专栏,主要介绍知识图谱的相关概念、技术,也包含一些具体实践。 通过前面几篇文章的介绍,读者应该对知识图谱,其相关概念,以及语义网技术栈中的RDF,RDFS/OWL有了一定的了解。然而,之前我们都是在介绍一些概念性的东西。实践才出真知,理论掌握得再好,不能解决...

2019-05-05 15:56:09

阅读数 396

评论数 2

一文揭秘!自底向上构建知识图谱全过程

阿里妹导读:知识图谱的构建技术主要有自顶向下和自底向上两种。其中自顶向下构建是指借助百科类网站等结构化数据源,从高质量数据中提取本体和模式信息,加入到知识库里。而自底向上构建,则是借助一定的技术手段,从公开采集的数据中提取出资源模式,选择其中置信度较高的信息,加入到知识库中。 在本文中,笔者主要想...

2019-05-04 15:29:04

阅读数 264

评论数 0

Playing Around With VirusTotal Graph

A few days ago, I bumped into a new post from folks from VirusTotal announcing the VirusTotal Graph, the tool not only caught my attention from who i...

2019-03-05 16:38:25

阅读数 68

评论数 0

豆瓣图书的推荐与搜索、简易版知识引擎构建(neo4j)

DouBanRecommend 基于豆瓣图书的推荐、知识图谱与知识引擎简单构建neo4j 本项目主要贡献源来自豆瓣爬虫(数据源)lanbing510/DouBanSpider、知识图谱引擎Agriculture_KnowledgeGraph、apple.turicreate中内嵌的推荐算法。 主要...

2019-02-14 01:12:18

阅读数 125

评论数 0

IBM Watson Discovery Knowledge Graph

Last Updated: 2018-06-09Edit in GitHub Knowledge graphs go beyond just data and information by making connections within your data across documents ...

2019-01-15 14:53:23

阅读数 198

评论数 1

知识图谱资料收集

第一届全国中文知识图谱研讨会第二届全国中文知识图谱研讨会第三届全国中文知识图谱研讨会全国知识图谱与语义计算大会(CCKS 2016)CCKS 2017-全国知识图谱与语义计算大会...

2018-06-01 09:12:58

阅读数 724

评论数 0

从知识图谱到事理图谱 | CNCC 2017

雷锋网AI科技评论按:由中国计算机学会(CCF)主办,福州市人民政府、福州大学承办,福建师范大学、福建工程学院协办的 2017 中国计算机大会(CNCC 2017)于 10.26—10.28 日在福州•海峡国际会展中心举办。大会除了14场特邀报告,还有2场大会主题论坛、40余场学术论坛、30余场特...

2018-05-27 01:06:24

阅读数 1797

评论数 0

大规模知识图谱的构建、推理及应用

随着大数据的应用越来越广泛,人工智能也终于在几番沉浮后再次焕发出了活力。除了理论基础层面的发展以外,本轮发展最为瞩目的是大数据基础设施、存储和计算能力增长所带来的前所未有的数据红利。 人工智能的进展突出体现在以知识图谱为代表的知识工程以及以深度学习为代表的机器学习等相关领域。未来伴随着深度学习对于...

2018-05-19 09:40:34

阅读数 990

评论数 0

提示
确定要删除当前文章?
取消 删除