引言
上期介绍了在鲲鹏 CPU+NVIDIA GPU上部署DeepSeek的流程,本期将会继续介绍在鲲鹏 CPU+昇腾 NPU上通过vLLM框架来部署DeepSeek。
系统环境硬件要求
NPU推理规格
模型 | CPU | NPU | 内存 | 存储 |
---|---|---|---|---|
DeepSeek-R1-Distill-Qwen-1.5B | 至少8核 | 至少6GB显存 | 16GB以上 | 60GB以上 |
DeepSeek-R1-Distill-Qwen-7B | 至少32核 | 至少32GB显存 | 32GB以上 | 60GB以上 |
DeepSeek-R1-Distill-Llama-8B | 至少32核 | 至少32GB显存 | 32GB以上 | 60GB以上 |
使用vLLM推理框架在昇腾NPU上的DeepSeek部署过程
以下部署流程以Atlas 800I A2服务器,openEuler 24.03 LTS操作系统为例说明如何使用vLLM框架部署DeepSeek-R1-Distill-Llama-8B。需要注意的是,该部署流程当前适合Altas 800I A2和Altas 800T A2服务器,对于其他的服务器型号暂时缺乏验证。
部署流程分为以下3个部分:
- 开发环境配置
- vLLM构建
- 大模型部署
开发环境配置
首先执行npu-smi info
查看驱动加载是否成功。如果出现类似下图的回显信息说明加载成功,可跳过驱动固件安装步骤,开始安装昇腾容器引擎插件。否则需要首先安装驱动及固件。
对于Atlas 800I A2服务器,按照官方提供的流程安装NPU驱动及固件和[昇腾容器引擎插件]。(https://www.hiascend.com/document/detail/zh/quick-installation/24.0.RC1/quickinstg/800I_A2/quickinstg_800I_A2_0030.html)
vLLM构建
首先需要拉取镜像:
docker pull hub.oepkgs.net/neocopilot/deepseek_vllm:cann.8.0.rc3.beta1-910b-openeuler22.03-py3.10
倘若出现了x509: certificate signed by unknown authority
错误,可以临时绕过证书验证,执行如下命令后重新拉取镜像:
echo '{"insecure-registries": ["quay.io"]}' | sudo tee /etc/docker/daemon.json
sudo systemctl restart docker
采用如下命令拉起容器:
docker run -it \
-p 2023:23 \
--name deepseek_npu_8b \
--device /dev/davinci0 \
--device /dev/davinci1 \
--device /dev/davinci2 \
--device /dev/davinci3 \
--device /dev/davinci4 \
--device /dev/davinci5 \
--device /dev/davinci6 \
--device /dev/davinci7 \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
quay.io/ascend/cann:8.0.rc3.beta1-910b-openeuler22.03-py3.10 bash
注意:
-p 2023:23
是将容器内的2023端口映射到宿主机上的23端口。这两个端口可以根据开发者机器的情况来自行调整。需要注意的是,一旦这里的端口映射修改了,后续流程中的端口也要做响应调整。--device /dev/davinciX
为使用的NPU卡的数量,可以根据实际情况进行调整,本教程使用的是8张NPU卡,即/dev/davinci0
到/dev/davinci7
,其他启动参数不变。
在进入容器后,采用如下命令构建vLLM:
yum install -y python python-pip gcc cmake git
pip install ml-dtypes tornado -i https://mirrors.huaweicloud.com/repository/pypi/simple
git clone https://github.com/wangshuai09/vllm
cd vllm
git chekcout npu_support
VLLM_TARGET_DEVICE=npu pip install -e . -i https://mirrors.huaweicloud.com/repository/pypi/simple
大模型部署
采用如下命令启动模型服务:
python -m vllm.entrypoints.openai.api_server \
--served-model-name deepseek-r1:8b \
--model /home/deepseek/DeepSeek-R1-Distill-Llama-8B \
--trust-remote-code \
--host 0.0.0.0 \
--port 23 \
--max-model-len 4096 \
--tensor-parallel-size 8 \
--gpu_memory_utilization 0.8 \
--enforce-eager \
--dtype float16 &
以下是部分参数的解读:
--served-model-name
指定部署的模型名称,这里指定为deepseek-r1:8b
--model
指定要加载的模型路径,这里需要注意修改模型路径为自己刚刚下载的模型路径文件--host
指定服务器监听的IP地址,0.0.0.0
表示监听所有的网络接口,允许外部访问--port
指定服务器监听的端口号,这里与上文对应,指定为23
,读者可以自行修改--max-model-len
指定模型的最大上下文长度,这里指定为4096
,超过该长度的输入会被截断--tensor-parallel-size
指定张量并行的数量,设置为8
表示模型将会在8
个NPU上进行并行计算,读者需要根据在容器启动时制定的NPU数量来填写。--dtype float16
指定模型计算的数据类型为float16
(半精度浮点数)
通过CTRL+D
回到宿主机后,通过如下命令进行功能验证:
curl -X POST "http://localhost:2023/v1/chat/completions" \
-H "Content-Type: application/json" \
-d '{
"model": "deepseek-r1:8b",
"messages": [{"role": "user", "content": "请介绍一下开源操作系统openEuler"}]
}'
问答效果展示:
{
"id": "chatcmpl-e8643c42d3e04fe3b509d284b761422d",
"object": "chat.completion",
"created": 1739419475,
"model": "deepseek-r1:8b",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"reasoning\_content": null,
"content": "好的,我现在遇到了关于openEuler的问题,我需要仔细思考一下该怎么介绍它。首先,openEuler是一个操作系统,类似于Linux和Windows,主要面向企业用户,提供了诸多高级功能。它在几年前发布,开源社区支持很好,这点很重要,说服用户使用的关键点。在资源管理方面,openEuler有高效的内核,支持Containerd和CRI,让云原生应用方便运行。安全性也是一大卖点,多级权限和容器安全机制都是亮点,满足企业对安全的需求。当然,openEuler也有不足之处。虽然功能全面,但相较于传统大 flea Like Linux,生态系统还不够成熟。企业如果有特殊需求,可能还是得依赖花旗帮派,这也是需要考虑的。其他挑战包括引起的许可问题和技术债务,需要持续改进。所以,总体来看,openEuler适合需要高性能和可靠性企业用户,特别是开源技术和云原生应用方面的团队。它能提供一整套工具,解决很多复杂问题,但仍在不断发展中,未来有很多潜力。</think>openEuler 是一个开源操作系统,旨在为企业用户提供高性能和可靠的运维体验。它结合了 Linux 的成熟稳定性和 Windows 的现代化 User Experience。开源背景使得 openEuler 适合开发者和企业,可以根据特定需求进行定制和优化。由于其高效的资源管理和强大的安全机制,openEuler 在云原生应用和容器化环境中表现优异。然而,尽管功能丰富,这些要是到传统操作系统路线上的uggy以外,openEuler 的生态系统尚未成熟,可能难以满足所有复杂需求。总体而言,openEuler 是一个有潜力的操作系统,值得企业关注。",
"tool\_calls": []
},
"Logprobs": null,
"finish\_reason": "stop",
"stop\_reason": null
}],
"usage": {
"prompt\_tokens": 15,
"total\_tokens": 466,
"completion\_tokens": 451,
"prompt\_tokens details": null
},
"prompt\_logprobs": null
}