图像处理
文章平均质量分 92
packdge_black
一条梦想是做一款国产单机策略游戏的咸鱼。
展开
-
用JAVASCRIPT调整内容感知图像的大小
https://trekhleb.dev/blog/2021/content-aware-image-resizing-in-javascript/转载 2021-06-19 13:17:43 · 372 阅读 · 0 评论 -
论文《Efficient palette-based decomposition and recoloring of images via RGBXY-space geometry》笔记
Fig1:我们的方法自动将输入的彩色图像分解为稀疏的一组均匀着色的添加剂混合层。我们的算法将分解分为两级几何问题。第一级计算输入图像像素的5D RGBXY凸包和Delaunay细分,同时考虑颜色和空间关系。它的顶点用黑色勾勒出轮廓。 5D单纯形很难可视化。图像中的任何颜色都可以通过这些顶点的凸组合来再现。第二层计算一个自动简化的RGB凸包,其顶点用作调色板。由于RGBXY凸包顶点位于RGB凸包内部,因此我们可以找到混合权重,这些权重控制RGBXY顶点的颜色,从而控制整个图像。由于RGBXY顶点与..原创 2021-02-08 13:21:15 · 1037 阅读 · 3 评论 -
数字图像处理(八)图像压缩-有损压缩/压缩算法+matlab
有损压缩/压缩算法实验 1、问题及说明查阅JPEG编码的有关资料,对图像进行JPEG压缩,算法步骤必须包括如下几个部分:图像分块,离散余弦变换,量化,ac和dc系数的Z字形编排。在输入灰度图像时直接将样例中的彩色图像转为灰度图像,并输出相应的频谱图。质量因子分别选为20,60,80,对比显示原图与不同质量因子下解码后的图像 记录图像大小、压缩比、均方根误差;对结果进行分析2.效果展示3.结果分析可以看到,对于同一张图片,不同的质量因子,有着不同的结果:质量因子的增加..原创 2020-07-09 15:55:04 · 5083 阅读 · 1 评论 -
数字图像处理(七)图像压缩-无损编码/压缩算法+matlab
要求:无损编码/压缩算法:问题1: 实现行程编码压缩, 肉眼观察压缩效果,并计算原图和压缩以后的尺寸,计算压缩率并比较分析; 问题2: 实现哈夫曼压缩, 肉眼观察压缩效果,并计算原图和压缩以后的尺寸,计算压缩率并比较分析; 问题3: 实现一维无损预测压缩, 肉眼观察压缩效果,并计算原图和压缩以后的尺寸,计算压缩率并比较分析.1、问题及说明(1)实现行程编码压缩, 肉眼观察压缩效果,并计算原图和压缩以后的尺寸,计算压缩率并比较分析。基本思路是把数据看成一个线性序列,而这些数据序列组织方式原创 2020-07-09 15:52:23 · 22788 阅读 · 7 评论 -
数字图像处理(六)频域增强-灰度和彩色图像的离散余弦变换+matlab
要求:灰度和彩色图像的离散余弦变换:问题1:对输入的灰度和彩色图像进行分块,每一块图像为8*8像素的大小。对分块图像进行离散余弦变换,输出频谱图(DCT系数); 问题2:尝试改变部分的DCT系数; 问题3:通过离散余弦逆变换,还原出图像,观察与原图像之间的区别。1、问题及说明(1)对输入的灰度和彩色图像进行分块,每一块图像为8*8像素的大小。对分块图像进行离散余弦变换,输出频谱图(DCT系数);(2)尝试改变部分的DCT系数;(3)通过离散余弦逆变换,还原出图像,观察与原图像之间的区别原创 2020-07-09 15:36:10 · 2810 阅读 · 1 评论 -
数字图像处理(五)频域增强-灰度和彩色图像的快速傅立叶变换+matlab
要求:灰度和彩色图像的快速傅立叶变换:问题1:对输入的灰度和彩色图像进行快速傅立叶变换,显示频谱图; 问题2:进行逆变换,观察结果。1、问题及说明(1)对输入的灰度和彩色图像进行快速傅立叶变换,显示频谱图;(2)进行逆变换,观察结果;在输入灰度图像时直接将样例中的彩色图像转为灰度图像,并输出相应的频谱图。2、效果展示(1)输出灰度和彩色图像的频谱图(2)逆变换3、完整代码(1)灰色+逆变换:clear;clc;x = imread('girl.ti原创 2020-07-09 15:32:46 · 4828 阅读 · 1 评论 -
数字图像处理(四)频域增强-彩色图像的频域滤波器+matlab
要求:彩色图像的频域滤波器:问题1:采用高斯低通滤波器对彩色图像进行滤波操作, 取半径为5, 20, 50, 80和250, 分别输出空域和频域的结果图像。 问题2:自行选择一种频域的高通滤波器对彩色图像进行滤波操作, 取3组不同的参数进行实验,根据实验效果进行参数的比较分析。1、问题及说明采用高斯低通滤波器对彩色图像进行滤波操作, 取半径为5, 20, 50, 80和250, 分别输出空域和频域的结果图像。 自行选择一种频域的高通滤波器对彩色图像进行滤波操作, 取3组不同的参数进行实验,.原创 2020-07-09 15:30:02 · 4917 阅读 · 0 评论 -
数字图像处理(三)空域增强+python
要求:实现直方图均衡化的算法,对彩色图像进行直方图均衡化 彩色图像的去噪:对一副彩色图像分别添加高斯噪声和椒盐噪声; 编写一种线性滤波(如均值滤波)与一种非线性滤波(如中值滤波),对二种噪声图像进行去噪。 图像锐化:基于微分算子,编写程序实现一种锐化滤波,提取图像的边缘信息; 将上述步骤提取的图像,叠加到原图上,分析和比较锐化后的效果。一、直方图均衡化1.说明直方图均衡化是对于一个图像,它有多个灰度级的像素,我们需要尽可能的让这些灰度级出现的频率相同。这样会有更好的对比度,细节展示的更好。原创 2020-07-09 15:23:53 · 2453 阅读 · 0 评论 -
数字图像处理(二)分水岭算法+python
1、算法原理说明传统分水岭算法:任何灰阶图像都可以视为地形表面。图像中每一像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆地,而集水盆地的边界则形成分水岭。我们用在局部最小值的地方,打一个小孔,然后把整个地形浸入到水中。那么当水没过高峰时,不同盆地的水,必然会产生融合。为了防止这种情况,我们在水没过高峰时,就在两盆地的边缘线处竖起一座大坝。然后继续此操作,知道最后填满水。所创建的大坝就会形成分水岭。但是这种做法,由于图像中存在很多的噪声或局部不规则性,会产生很多小的集水原创 2020-07-09 15:04:04 · 3389 阅读 · 0 评论 -
数字图像处理(一)图像分割+python
设计3*3的模板,对一副测试图像进行正负45度的边缘检测。sobel:import cv2import matplotlib.pyplot as plt# 读图img = cv2.imread('lena.jpg')img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 灰度化grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# Sobelx = cv2.Sobel(grayImage,原创 2020-07-09 14:57:25 · 1019 阅读 · 0 评论