论文标题
TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables 利用外生变量赋能时间序列预测的Transformer
论文链接
TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables论文下载
论文作者
Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jianmin Wang, Mingsheng Long
内容简介
本文提出了一种新颖的方法TimeXer,旨在通过引入外生变量来增强内生变量的时间序列预测。传统的时间序列预测方法往往忽视外生变量的影响,而TimeXer通过巧妙设计的嵌入层,结合了内生和外生信息,利用分块自注意力和变体交叉注意力机制,提升了预测的准确性。实验结果表明,TimeXer在十二个真实世界的预测基准上表现出色,展现了显著的通用性和可扩展性。该方法不仅适用于短期预测,还能有效处理多元时间序列预测中的外生变量。
分点关键点
- TimeXer框架
- TimeXer通过引入外生变量&#x