文章目录
文章信息
- 模型: TimeXer(Time Series Transformer with eXogenous variables)
- 关键词:时间序列预测,外部变量(Exogenous Variables)
- 作者:Yuxuan Wang ; Haixu Wu(吴海旭) ; Jiaxiang Dong ; Yong Liu ; Yunzhong Qiu ; Haoran Zhang ; Jianmin Wang(王建民) ; Mingsheng Long(龙明盛)
- 机构:清华大学
- 发表情况:暂无 [arXiv:Submitted on 29 Feb 2024 (v1), last revised 11 Nov 2024 (this version, v4)]
- 网址:[2402.19072] TimeXer: Empowering Transformers for Time Series
Forecasting with Exogenous Variables
前言
1. 序列表示的level
2. 内生变量与外生变量(Endogenous & Exogenous)
内生变量:只关注感兴趣的目标
外生变量:为内生变量提供有价值的外部信息
数据集上举例:
外生变量的作用:
从时间序列建模的角度来看,外生变量被引入到预测器中是为了提供信息,而不需要预测。
将外生变量与内生变量等同对待,不仅会造成时间和记忆的极大复杂性,而且还会涉及到内生序列与外部信息之间不必要的相互作用。
其次,外部因素可能会对内生序列产生因果影响,因此模型需要对不同变量之间的系统时间滞后(systematic time lags)进行推理。
再者,实际场景中相比于内生变量会出现以下问题:
因此如何将外生